İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI"

Transkript

1 İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI Ahmet ERGÜLEN * Halm KAZAN ** Muhtt KAPLAN *** ÖZET Arta rekabet şartları çersde karlılıklarıı korumak ve devamlılıklarıı sağlamak steye frmalar ç malyetler e aza drlmes kaçıılmaz br zorululuktur. Frmaları toplam malyetler çersde yer ala öeml kalemlerde ola dağıtım malyetler mmzasyou bu açıda özel öem arz etmektedr. Buula brlkte, dağıtım malyetler mmzasyou, çok farklı boyutlar çermes ve halyle br çok belrszlğ çersde taşıyor olması sebebyle çözümü oldukça karmaşık br koudur. Ülkemzdek frmaları büyük br çoğuluğu bu problem, belrszlğ ortada kaldırılması şlem, öcek tecrübelerde yararlaarak çözmeye çalışmaktadırlar. Fakat, bu yaklaşımda, dağıtımı bütü boyutlarıı ayı ada ele alıması mümkü olamamakta ve halyle tecrübe kouu çözümüde yetersz kalmaktadır. Lteratürde, Tamsayılı Doğrusal Programlama (TDP) yötem bu belrszlğ aşmaı e etk yollarıda brs olduğu sıkça vurgulamaktadır. Bu makalede, teork altyapısı oldukça karmaşık ola TDP model formülasyou, farklı sektörlerde faalyet göstere frma yöetcler ked şlere kolayca uyarlayableceğ şeklde basamaklar halde açıklamıştır. Ve gelştrle geel kapsamlı TDP model gıda sektörüde faalyet göstere, 24 dstrbütörü ola br frmaya uygulamış, tecrübeye dayalı dağıtıma orala TDP model le yapıla dağıtımı frmaı dağıtım malyetler yaklaşık olarak %6 oraıda azaltacağı görülmüştür. Aahtar Kelmeler: Tamsayılı-Doğrusal Programlama(TDP), Matematksel model, Lojstk ABSTRACT It s crucal for the frms, whch am to susta ther proftablty ad to survve, to reduce ther operatoal costs wth a evromet where competto kept rsg. For ths reaso, mmsato of dstrbuto costs has attracted a specal terest as t explas a large share of total costs. However, mmsato of dstrbuto costs s a very complex problem to solve because of the fact that dstrbuto costs have varous dmesos ad thus carry a hgh level of ucertaty. A large umber of frms our coutry try to overcome ths ucertaty usg ther prevous experece. But, ths approach does ot allow to capture all the dmesos of the dstrbuto at the same tme ad therefore, experece s a adequate method to use ths matter. Nevertheless, the lterature, the use of the Iteger Lear Programmg (ILP) s ofte emphassed to be oe of the most effcet way to overcome ths problem. I ths artcle, the practcal formulato of the ILP model that ormally volves a very complex theoretcal structure has bee show step by step, thereby top maagemet of frms operatg dfferet dustres ca easly adapt for ther frms. I addto, a geeral ILP model developed ths artcle has appled to the data obtaed from a frm operatg food dustry wth 24 * Yrd. Doç. Dr., Nğde Üverstes İktsad ve İdar Blmler Fakültes ** Yrd. Doç. Dr., Gebze Y.T.E. *** Yrd. Doç. Dr., Nğde Üverstes İktsad ve İdar Blmler Fakültes

2 Ahmet ERGÜLEN Halm KAZAN Muhtt KAPLAN dstrbutg aget ad the results dcated that dstrbuto cost of the frm ca be reduced about 6% usg the ILP model compared to the experece based dstrbuto costs. Keywords: Lear-Iteger programmg, Mathematcal model, Logstc GİRİŞ Güümüzde yöetcler e öeml soruu belrszlk ortamıda alıa kararları tutarlı olup olmayacağıdır. Yöetmde kararları klask yollarla verlemeyeceğ, moder şletme yöetmde kattatf yötemler çok öeml olduğu kavraılmış ve şletme faalyet alalarıı oluştura pazarlama, üretm, yatırım, fasma, stoklama, fyat, sthdam, rekabet, ulaşım gb koularda oluşa yöetc kararlarıda kattatf modellerde yararlaılmaya başlaılmıştır. Karar verme buluduğu ortamda, brçok alteratf kararları olması gerekmektedr. Bu alteratf kararları fazlalığı karar verme e uyguua ulaşmasıı sağlayacaktır. Kattatf problemlerde verle ssteme uygu modelleme le çözümleme yapıldığı gb, karar vermede, sosyal blmlerde model ve sstem kavramlarıyla kullaılmaktadır. Bua göre karar verme şletmelerde yöetm temel görevdr. İşletme yöetcler de bu kararı verclerdr (Kara, 1985, s.5). Karar verme sürecde, karar verc kşsel becerlere dayaa karar yötem le karar teorse bağlı karar yötem olarak bahsedleblr. Karar verme teorsde gelştrle matematksel modeller, çok karmaşık problemler çözümüde olumlu souç alıması ve optmal kararı verlmesde kolaylık sağlamaktadır. Doğrusal programlama model, karar modeller maksmum model veya mmum model olarak oluşturulup amaçlara uygu karar modeller teşkl edlr. Bu modeller çözmede optmzasyo tekkler kullaılır. Doğrusal programlama model geel olarak grafk metodu ve smpleks metodu le çözüleblr. Bu metotlar farklı olarak kullaılırlar. Doğrusal programlama, optmzasyo problemler özel br bçm ve sıırlı kayakları bell br amacı e y şeklde gerçekleştrecek faalyetler arasıda, asıl dağıtılması gerektğ soruua çözüm getre br yötemdr. Matematk model kullaa bu yötem, şletme problemler matematksel olarak programlaması ve çözümüü kapsamaktadır. İşletme problemler çözüm sürec, matematk modellerde yaralaarak bulua souçları gerçeğe uyguluk dereceler araştırılması, gerekl kotroller yapılması ve uygulama stratejler saptaması le tamamlaır. Yapıla lteratür taramasıda, dağıtım problemleryle lgl olarak; Che & Wag (1997), Balakrsha, Nataraja & Pagbur (2000), Ergüle (2005), Uluca & Tarım (1997) ve Kaleder (2003) AGVs tasarım problem ç bütüleşk br model çalışmalarıda karışık tamsayı programlama uygulamasıı yapmışlardır. Ayrıca Tuçblek (2003) verml taşımacılık yolu demr yolu çalışmasıı yapmıştır. Ergüle ve Kaza (2005) taşıma malyetler mmzasyou ç frma malyetler optmze etmşlerdr. Farklı olarak dağıtım problemler Özel (2000) matrs deklemler k dsl düzlemsel dağıtım probleme uygulaması olarak ele alımış, problem matrs deklemler 164

3 İşletmelerde Dağıtım Sstem Malyetler Mmzasyou İç Çözüm Model: Br Frma Uygulaması csde formülasyou yapılmıştır. Şafak (2000) m çıkış ve varışlı br dağıtım problem optmallk koşullarıı, Lagrage foksyou ve Hessa matrs özellkler kullaılarak celemştr. TAMSAYILI DOĞRUSAL PROGRAMLAMA Doğrusal programlama kayak dağıtımıyla lgl plalama ve karar vermede yöetclere yardım etmek ç dzay edle, çok kullaıla matematksel br tekktr (Reder, 1982, s.240). Doğrusal programlama, br çok değşke, leer eştszlkler şekldek br çok kısıtlamaya maruz ke bu değşkeler maksmze( veya mmze ) edldğ problemler aalzdr (Dorfma, 1958, s.9). Tamsayılı programlama, doğrusal programlama problemlere optmum tamsayı çözümü türetmek ç gelştrle doğrusal programlamaı özel br uzatısıdır (Lee, 1988, s.174). Değşkeler br kısmıı veya tamamıı tamsayılı değerler aldığı, geel doğrusal programlama modelde elde edle optmzasyo (e yy bulma ) problemler br sııfı, tamsayılı doğrusal programlama problem olarak fade edlr (Doğa, 1995, s.8). Bazı doğrusal programlama problemlerde optmal çözümdek tüm değşkeler tamsayılı değerler olması stedğde, tamsayılı doğrusal programlama problemler taımlamasıyla programlama belrtlr. Doğrusal programlama modellerde, Tamsayılı programlamayla şu şeklde karşılaşılır: 1- Bütüüyle tamsayılı programlama Modeldek tüm karar değşkeler tamsayı değer almak zorudadır. 2- Karma tamsayılı programlama Karar değşkeler p taes sıfır veya sıfırda büyük olması, kalaı tamsayı değer alması gerekldr Tamsayılı programlama Tüm karar değşkeler ya sıfır yada br değer almaları stemştr (Kara, 1986, s.97). TAMSAYILI-DOĞRUSAL PROGRAMLAMA MODELİNİN FORMÜLASYONU Tamsayılı-Doğrusal programlama model, karar modeller maksmum model veya mmum model olarak oluşturulup amaçlara uygu karar modeller teşkl edlr. (Mmum doğrusal programlama model, maksmum doğrusal programlama model gbdr. Acak amaç foksyoudak sıırlayıcı şartları eştszlkler yöü değşktr). Tamsayılı-Doğrusal programlama yötemde model; Amaç deklemde, Sıırlayıcı şartlar (Kısıtlar) da ve poztflk şartıda oluşur. Buları oluşturulablmes ç karar değşkeler tespt edlerek taımlaması gerekr. 165

4 Ahmet ERGÜLEN Halm KAZAN Muhtt KAPLAN Karar Değşkeler ve Parametreler Belrlemes Tamsayılı-Doğrusal programlama model çözümüde model formüle edlrke lk olarak, karar değşkeler ( Kotrol edleble değşkeler ) ve parametreler ( Kotrol edlemeye değşkeler ) belrlemes ve buları eler temsl ettkler belrtlmesdr. le fade edle br karar değşke, brde fazla olması durumuda ( = 1,2,..., ) şeklde gösterlr. Bua göre 1, 2,..., gb tae karar değşke modelde kullaılması gerektğce kullaılablr. Her br fade ettğ alam belrtlr. Formüle edlecek modelde br frmaı taşıma malyet hesaplamasıda sefer sayıları değşkeler le taımladığıda, bu değşkee bağlı dslerde : araç tp, j: aracı sefer yaptığı yer belrledğde,. aracı j bölgese yapması gereke sefer sayısıı temsl eder. Ayrıca araçları yeterl gelmemes halde sefer sayıları Y Y değşke le taımlaıp kralaacak. tp aracı yapması gereke sefer sayısıı temsl eder. Burada karar değşkeler farklı d sembollerle de fade edleblr. Ayrıca le belrtle parametre,. tp aracı j e bölgese yapacağı sefer malyet, le belrtle parametre, kralaacak. tp aracı yapacağı sefer malyet belrtr. Brde fazla parametreye htyaç duyulması halde htyaç olduğu kadar değşk sembollerle parametreler kullaılablr. Sıırlayıcı Şartları Formülasyou İş gücü, sermaye, eerj gb mevcut mktarları sıırlı ola faktörler ç sıırlayıcı şartlar geçerldr. Sıırlayıcılar, kotrol edleble ve kotrol edlemeye değşkeler le parametreler arasıda sağlaması zorulu ola lşklerdr ( Es, 1988, s.5 ). Amacı gerçekleştrmek ç uyulması gerekl ola sıırlamalardır. Değşk olarak sıırlamalar yapılablr. Bu sıırlar (Mmum model ç ) ; g1 y1 + g 2 y2 + g3 y g y K ve poztflk şartı, y 1 0, y 2 0,..., y 0 olarak fade edlr. Burada değşkeler poztf olmasıı sebeb se, üretm egatf olamayacağıdır (Tek, 1995, s.6). Br frmaı taşıma malyet hesaplamasıda, araçları sefer sayıları kısıtı ve dağıtımı yapılacak malları yük kısıtı olmak üzere k türlüdür. Sefer Süres Kısıtı Formüle edlecek modelde br frmaı dağıtım sstemde, sefer sayıları kısıtı oluşturulur. Bu kısıtta; 166

5 İşletmelerde Dağıtım Sstem Malyetler Mmzasyou İç Çözüm Model: Br Frma Uygulaması : araç tp j: aracı sefer yaptığı yer belrtmek üzere, parametreler; a :. tp aracı j bölgese br sefer yapması gereke süres c : Kralık. tp aracı yapacağı sefer süres b :. tp aracı j bölgese e fazla sefer yapableceğ süres Karar değşkeler se, :. tp aracı j bölgese yapacağı sefer sayısı Y : Kralaacak. tp aracı yapacağı sefer sayısı olarak fade edleblr. Bu taımlamalara göre sefer sayıları kısıtı ; ( a cy ) b j= 1 =1,2,...,m (m:araç türler sayısı) j=1,2,..., (:bölge sayısı) (1) şeklde formüle edlr. Dağıtımı Yapılacak Malları Yük Kısıtı Modelde br frmaı dağıtım sstemde, dağıtımı yapılacak mallara at yük kısıtı oluşturulur. Bu kısıtta da; : araç tp, j:aracı sefer yaptığı yer göstermek üzere parametreler ola, f :. tp aracı j bölgese yapacağı seferdek toaj değer, h k : k bölgese göderlecek yük mktarlarıı, Karar değşkeler se, yukarıdak gb fade edlr. Bua göre dağıtımı yapılacak ola malları yük kısıtı; m f hk =1 =1,2,...,m (m:araç türler sayısı) j=1,2,..., (:bölge sayısı) k =1,2,..., (: bölgelere at yük değerler) (2) şeklde formüle edlr. Amaç Deklem Formülasyou Amaç foksyou matematksel modellerde MaxZx olarak kar maksmzasyou veya MZy olarak malyet mmzasyou şeklde buluur. Bu amaçlara göre, tamsayılı-doğrusal programlama metoduyla model oluşturulablr. Bu şekldek modellere maksmum tamsayılı-doğrusal programlama model veya mmum tamsayılı-doğrusal programlama model 167

6 Ahmet ERGÜLEN Halm KAZAN Muhtt KAPLAN der. Bu modellerde amaç foksyoudak sıırlayıcı şartları eştszlkler yöü değşktr. Gerçekleştrlmek stee olaylardır. Matematksel modellerde değşkeler ve katsayı değerlerde oluşmaktadır. Foksyou değer maksmum veya mmum yapmak e geel optmzasyo şekldr (Igzo, 1989, s.18). Bu geel olarak (mmum model ç ); Mmze Subject to j= 1 c j j a j j r =1 = 1,2,...,m 0 şekldedr (Chag, 1984). j = 1,2,..., Formüle edlecek modelde br frmaı taşıma malyet hesaplamasıda oluşturulacak amaç deklemde de; : araç tp, j:aracı sefer yaptığı yer göstermek üzere kullaıla parametreler, d :. tp aracı j bölgese yapacağı sefer malyet, e : Kralaacak. tp aracı yapacağı sefer malyet Karar değşkeler se, ve Y se yukarıdak gb fade edlr. Bu taımlamalara göre amaç deklem; M Z = m ( d = 1 j= 1 şeklde formüle edlr. + e Y ) = 1,2,...,m (m: araç türler sayısı) j = 1,2,..., (: bölge sayısı ) (3) MODELİN ÇÖZÜLMESİ Amaç Deklem; Z = ( d m m = 1 j= 1 + e Y ) = 1,2,...,m (m: araç türler sayısı) j = 1,2,..., (: bölge sayısı ) 168

7 İşletmelerde Dağıtım Sstem Malyetler Mmzasyou İç Çözüm Model: Br Frma Uygulaması Sefer Süres Kısıtı; ( a cy ) b j= 1 =1,2,...,m (m:araç türler sayısı) j=1,2,..., (:bölge sayısı) Dağıtımı Yapılacak Malları Yük Kısıtı; m f hk =1 =1,2,...,m (m:araç türler sayısı) j=1,2,..., (:bölge sayısı) k =1,2,..., (: bölgelere at yük değerler) Poztflk Şartı; Y 0 0 ve tamsayı ve tamsayı (4) İşletmelerde taşıma malyet mmzasyou ç kurula bu model çok sayıda değşke çere modeller oluşturacağıda, bu tür problemler çözecek blgsayar paket programlarıı kullaılmasıa htyaç vardır. Mevcut ola bu blgsayar paket programları, doğru kurula modeller e y zamada ve e uygu şeklde çözümleyeblmektedr. UYGULAMA Frmaya at ürüler dstrbütörlere dağıtılırke, model çde karar değşkeler malyetler belrlep, kurula amaç deklem matematksel modelleme safhası tamamlamış, uygu br paket program ola Wqsb paket programıyla çözümlemeye hazır hale gelmştr. Burada kurula modeller Wqsb paket programıyla ayrı ayrı çözümleerek souçlar elde edlmştr. Elde edle souçlara göre, modelle oluşturula optmum çözüm plaıa at dağıtım malyetlere ulaşılmıştır. Tablo 1. Modele At (Ocak 3.10 gü) Dağıtım Malyet TDP Model Modele At (Ocak 3.10 gü) Toplam Malyet = Modele At (Ocak 3.10 gü) Toplam Yük = Modele At (Ocak 3.10 gü) Toplam Sefer = 126 Tabloda yük mktarları to olarak, malyet se YTL olarak alımıştır. Frmaı dağıtım malyet belrlerke, 24 dstrbütörü sparşlere göre yapmış olduğu ocak ayı 3.10güdek malları taşıması sırasıda oluşa, 13 Toluk klmalı araçları yapmış oldukları sefer sayılarıa göre de frmaı dağıtım plaıa at, dağıtım malyet ortaya çıkarılır. 169

8 Ahmet ERGÜLEN Halm KAZAN Muhtt KAPLAN Tablo 2. Frmaya At (Ocak 3.10 gü) Dağıtım Malyet Frmaya at Yıllık (Ocak 3.10 gü) Toplam Malyet = Frmaya at Yıllık (Ocak 3.10 gü) Toplam Yük = Frmaya at Yıllık (Ocak 3.10 gü) Toplam Sefer = 187 Tabloda yük mktarları to olarak, malyet se YTL olarak alımıştır. Bua göre optmum çözüm plaı ve frmaı uyguladığı pla karşılaştırıldığıda, optmum çözüm plaıa at dağıtım malyet le frmaya at dağıtım malyet arasıda yıllık tasarruf mktarıı oluştuğu görülmektedr. Bu da Tablo 3 de verlmştr. Tablo 3. Yıllık Tasarruf Mktarı Frmaya At Toplam Verler; (Ocak 3.10 gü) Toplam Malyet = (Ocak 3.10 gü) Toplam Yük = (Ocak-3.10 gü) Toplam Sefer = 187 Modele At Toplam Verler; (Ocak 3.10 gü) Toplam Malyet = (Ocak 3.10 gü) Toplam Yük = (Ocak 3.10 gü) Toplam Sefer = 126 (Ocak 3.10 gü) Toplam Tasarruf = Frmaı (Ocak 3.10 gü) Toplam Malyet - Model (Ocak 3.10 gü) Toplam Malyet = = Tabloda yük mktarları to olarak, malyet se YTL olarak alımıştır. Tablo 3 e bakıldığıda yıllık toplam tasarrufu YTL olduğu görülür. Buda modelle yapıla dağıtım malyet, frmayla yapıla dağıtım malyete göre % 5,35 oraıda daha avatajlı ola br tasarruf sağladığıı göstermektedr. SONUÇ VE TARTIŞMA Frmalarda çok karşılaşıla ve br çok frmaı programıda bulua dağıtım sstem öeml yer tutmaktadır. Bu dağıtım sstemler frmaları lojstk bölümler orgaze etmektedr. Dağıtım malyet mmze edlmes göstermek amacıyla frmaı verler üzere doğrusal programlama model le matematksel modeller kurulableceğ geel olarak gösterlmştr. Bu fkr yapılamasıyla örek olarak alıa br frmaı güümüzde belrtle ölçülerde çalışıldığı zama malyet mmzasyouyla kazacıı e olacağıı belrlemek amacıyla ked dağıtım stratejse uygu blmsel yaklaşımla toplam dağıtım malyet belrleerek, dağıtım malyet mmze edlmes üzere model oluşturulableceğ belrtlmştr. 170

9 İşletmelerde Dağıtım Sstem Malyetler Mmzasyou İç Çözüm Model: Br Frma Uygulaması Kurula modeller paket programlarla çözümlep, şletmeler dağıtım malyetleryle karşılaştırılıp uygu dağıtım modellere ulaşılarak dağıtım malyet mmze edlmes sağlaablr. Tamsayılı-Doğrusal programlamada matematksel modelleme kurarak, şletmeler daha sorak döemlerde üreteceğ mallar ç toplam dağıtım malyetler öcede tahm edleblmes ve dağıtım sstem orgazasyou stratejler kısa zamada oluşturulup belrlemes mümkü olablr. Ayrıca ülkemzde, şletmelerle üversteler arasıda blmsel dayaışma sağlaarak, şletmeler her aşamadak faalyetler vermllğ arttırılablr. KAYNAKLAR BALAKRİSHNAN, A., NATARAJAN,H.P. & PANGBURN, M.S., (2000). Optmzg Delvery Fees For a Network of Dstrbutors. Maufacturg ad servce Operatos maagemet, Vol 2(3), CHEN, M. & Wag,W.(1997). A lear programmg model for tegrated steel producto ad dstrbuto plag. Iteratoal Joural of operatos ad Producto maagemet, vol 17(6), CHIANG, A.C. (1984). Fudametal Methods of Mathematcal Ecoomcs, NewYork:Mc Graw-Hll, Thrd Edto. DOĞAN, İ. (1995). Yöeylem Araştırması Tekkler ve İşletme Uygulamaları, İstabul: Blm Tekk Yayıev. DORFMAN, R. (1958). Lear Programmg ad Ecoomc Aalyss, Lodo: Mc Graw Hll Book Compay. ERGÜLEN, A. (2005). İşletmeler Dağıtım Stratejler Oluşturulması Model :Dağıtım Koşullarıı Ağır Olduğu Türkye dek Doğu ve Kuzey İller Üzere Örek Br Uygulama, Atatürk Üverstes İktsad ve İdar Blmler Fakültes Dergs Clt 19(1) ERGÜLEN, A., KAZAN, H., (2005), A Multı-Crıterıa Model For Optımızıg Trasportatıo Cost Structures Of A Fırm, Iteratoal Strategc Maagemet Coferece, Strategc Maagemet From Natoal Ad Global Perspectve, Jue ESİN, A. (1988). Yöeylem Araştırmasıda Yararlaıla Karar Yötemler, Akara : Gaz Üverstes yayı o: 126., 3. Baskı. IGNIZO, J. P. (1989). Itroducto to lear Goal Programmg, Lodo: Sage Puplcato, Secod Edto. KARA, İ. (1985). Yöeylem Araştırmasıı Yötemblm, Eskşehr: Aadolu Üverstes Yayıları o:96. KARA, İ. (1986). Yöeylem Araştırması, Eskşehr: Aadolu Üverstes Yayıları o:139 KALENDER, Y., (2003). AGVs tasarım problem ç Bütüleşk br model uluslararası lojstk kogres, o:53 LEE, S. M. (1988). Itroducto to Maagemet Scıece, NewYork: Sauders College Publshg, Secod Edto ÖZEL, M., (2000). İk dsl düzlemsel dağıtım Problem Matrs deklemleryle celemes, DEÜ Müh. Fak. Fe ve Müh.Dergs ( ) 171

10 Ahmet ERGÜLEN Halm KAZAN Muhtt KAPLAN RENDER, B. (1982). Quattatve Aalyss For Maagemet, Bosto: Ally ad Baco, Ic. ŞAFAK, S., (2000). Dağıtım problem optmallk Koşullarıı celemes, DEÜ Müh.Fak. Fe ve Müh.Dergs, ( ) TEKİN, M. (1995). Kattatf Karar Verme Tekkler, Koya: Kuzucular Ofset, 3. Baskı. TUNÇBİLEK, M., (2003). Verml taşımacılık yolu; Demryolu uluslararası lojstk kogres, o:35, İstabul. ULUCAN, A.ve Tarım, Ş.A.,(1997). Petrol ürüler dez Yoluyla taşımasıda malyet mmzasyou, HÜ İİBF dergs ( ). 172

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama KMÜ Sosyal ve Ekoomk Araştırmalar Dergs (8): 37-45, 00 ISSN: 309-93, wwwkmuedutr Kuruluş Yer Seçmde Bulaık TOPSIS Yötem ve Bakacılık Sektörüde Br Uygulama Nha Tırmıkçıoğlu Çıar Yıldız Tekk Üverstes, Kmya-Metalür

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI

ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Öer.C.9.S.. Temmuz 00.-. ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Semra ERPOLAT Mmar Sa Güzel Saatlar Üverstes Fe Edebyat Fakültes, İstatstk Bölümü,

Detaylı

DAĞITIM STRATEJİLERİNİN OLUŞTURULMASINA YÖNELİK MODEL OLUŞTURMA: BİR TÜRK FİRMASI ÜZERİNE ÖRNEK UYGULAMA

DAĞITIM STRATEJİLERİNİN OLUŞTURULMASINA YÖNELİK MODEL OLUŞTURMA: BİR TÜRK FİRMASI ÜZERİNE ÖRNEK UYGULAMA ZKÜ Sosyal Blmler Dergs, Clt 2, Sayı 4, 2006, ss. 123 145. DAĞITIM STRATEJİLERİNİN OLUŞTURULMASINA YÖNELİK MODEL OLUŞTURMA BİR TÜRK FİRMASI ÜZERİNE ÖRNEK UYGULAMA Yrd. Doç. Dr. Ahmet ERGÜLEN Nğde Ünverstes

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2 l Ta rr ım ı Ekooms Kog rres 6-8 - Eylül l 2000 Tek rrdağ TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ (980-998) (TRANLOG MALİYET FONKİYONU UYGULAMAI) Yaşar AKÇAY Kemal EENGÜN 2. GİRİŞ Türkye tarımı

Detaylı

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract YKGS2008: Yazılım Kaltes ve Yazılım Gelştrme Araçları 2008 (9-0 ekm 2008, İstabul) Yazılım Ürü Gözde Geçrmeler Öem, Hazırlık Sürec ve Br Uygulama Öreğ The Importace of the Software Product Revews, Preparato

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ ZKÜ Sosyal Blmler Dergs, Clt 3, Sayı 6, 2007, ss. 109 125. TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ Yrd.Doç.Dr. Ahmet ERGÜLEN Nğde

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*,

Detaylı

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim.

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim. 6..27 Tarhl Mühedslk ekooms fal sıavı Süre 9 dakka Sıav Saat: Sıav süresce görevllere soru sormayı. Başarılar dlerm. D: SOYD: ÖĞRENCİ NO: İMZ: Tek ödemel akümüle değer faktörü Tek ödemel gücel değer faktörü

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarhl ve 25391 sayılı Resm Gazete'de yayımlamıştır.) Amaç BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayaak Madde 1 Bu Yöetmelğ amacı, 4857 sayılı İş Kauuu 53 ücü maddes

Detaylı

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455 İler Tekoloj Blmler Dergs Joural of Advaced Techology Sceces ISSN:47-3455 GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ Yusuf ALAŞAHAN İsmal ERCAN Al ÖZTÜRK 3 Salh TOSUN 4,4 Düzce Üv, Tekoloj

Detaylı

MODERN İŞLETME YÖNETİMİNDE MATEMATİKSEL MODELLEME TEKNİĞİ: Yönetici Kararlarında Tamsayılı Doğrusal Programlama Modelinin Kullanımı

MODERN İŞLETME YÖNETİMİNDE MATEMATİKSEL MODELLEME TEKNİĞİ: Yönetici Kararlarında Tamsayılı Doğrusal Programlama Modelinin Kullanımı Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl/Volume: 3, Sayı/Issue: 5, 2007, 164-178 MODERN İŞLETME YÖNETİMİNDE MATEMATİKSEL MODELLEME TEKNİĞİ: Yönetc Kararlarında Tamsayılı Doğrusal Programlama

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi Yüksek Mertebede Sstemler İç Ayrıştırma Temell Br Kotrol Yötem Osma Çakıroğlu, Müjde Güzelkaya, İbrahm Eks 3 Kotrol ve Otomasyo Mühedslğ Bölümü Elektrk Elektrok Fakültes İstabul Tekk Üverstes,34369, Maslak,

Detaylı

Gerçek Zamanlı Giriş Şekillendirici Tasarımı Design of Real Time Input Shaper

Gerçek Zamanlı Giriş Şekillendirici Tasarımı Design of Real Time Input Shaper ELECO '0 Elektrk - Elektrok ve Blgsayar Mühedslğ Sempozyumu, 9 asım - 0 ralık 0, Bursa Gerçek Zamalı Grş Şeklledrc Tasarımı Desg of Real Tme Iput Shaper Sa ÜNSL, Sırrı Suay GÜRLEYÜ Elektrk-Elektrok Mühedslğ

Detaylı

AÇIK ARTIRMALI EKONOMİK YÜK DAĞITIM PROBLEMİ İÇİN FARKLI BİR YAKLAŞIM

AÇIK ARTIRMALI EKONOMİK YÜK DAĞITIM PROBLEMİ İÇİN FARKLI BİR YAKLAŞIM AÇIK ARTIRMALI EKONOMİK YÜK DAĞITIM ROBLEMİ İÇİN FARKLI BİR YAKLAŞIM Adem KÖK () Takut YALÇINÖZ () Nğde Tedaş, Nğde, ademkok@yahoo.com Nğde Üverstes, Elektrk-Elektrok Mühedslğ Bölümü, tyalcoz@gde.edu.tr

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ BILEVEL DISCRETE STOCHASTIC TRANSPORTATION PROBLEM

İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ BILEVEL DISCRETE STOCHASTIC TRANSPORTATION PROBLEM Electroc Joural of Vocatoal Colleges December/Aralı 20 İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ Hade GÜNAY AKDEMİR, Fatma TİRYAKİ 2 Özet Bu çalışmada, müşter talepler stoast, özellle esl rassal değşeler

Detaylı

TEDARİKÇİ SEÇİMİ İÇİN BİR KARAR DESTEK SİSTEMİ A DECISION SUPPORT SYSTEMS FOR SUPPLIER SELECTION

TEDARİKÇİ SEÇİMİ İÇİN BİR KARAR DESTEK SİSTEMİ A DECISION SUPPORT SYSTEMS FOR SUPPLIER SELECTION Süleyma Demrel Üverstes Mühedslk Blmler ve Tasarım Dergs 3(2), 9-04, 205 ISSN: 308-6693 Araştırma Makales Suleyma Demrel Uversty Joural of Egeerg Sceces ad Desg 3(2), 9-04, 205 ISSN: 308-6693 Research

Detaylı

Üretim ve Kalkınma Ekonomisi Sorunları ve Yönetimi Sadettin Özen 1, Samet Gürsev 2

Üretim ve Kalkınma Ekonomisi Sorunları ve Yönetimi Sadettin Özen 1, Samet Gürsev 2 Bu bldr 1- Mart 14 tarhlerde düzelee Üretm Ekooms Kogresde suulmuştur. Özet Üretm ve Kalkıma Ekooms Soruları ve Yöetm Sadett Öze 1, Samet Gürsev Üretm ve kalkıma ekooms temel soruu, taleb, sektörler özgü

Detaylı

Operasyonel Risk İleri Ölçüm Modelleri

Operasyonel Risk İleri Ölçüm Modelleri Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,

Detaylı

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği Akademk Blşm 11 - III. Akademk Blşm Koferası Bldrler 2-4 Şubat 2011 İöü Üverstes, Malatya Bağıl Değerledrme Sstem Smülasyo Yötem le Test Edlmes: Kls 7 Aralık Üverstes Öreğ Kls 7 Aralık Üverstes, Blgsayar

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

Bir Telekomünikasyon Probleminin Matematiksel Modellenmesi Üzerine

Bir Telekomünikasyon Probleminin Matematiksel Modellenmesi Üzerine Br Telekomükasyo Problem Matematksel Modellemes Üzere Urfat Nuryev, Murat Erşe Berberler, Mehmet Kurt, Arf Gürsoy, Haka Kutucu 2 Ege Üverstes, Matematk Bölümü, İzmr 2 İzmr Yüksek Tekolo Esttüsü, Matematk

Detaylı

Analitik Hiyerarşi Süreci Kullanılarak Kişi Takip Cihazı Seçimi. Person Tracking Device Selection Using Analytic Hierarchy Process

Analitik Hiyerarşi Süreci Kullanılarak Kişi Takip Cihazı Seçimi. Person Tracking Device Selection Using Analytic Hierarchy Process BİLİŞİM TKNOLOJİLRİ DRGİSİ, CİLT: 8, SAYI: 1, OCAK 2015 20 Aaltk Hyerarş Sürec Kullaılarak Kş Takp Chazı Seçm Bedredd Al AKÇA 1, Ahmet DOĞAN 2, Uğur ÖZCAN 3 1 Yöetm Blşm Sstemler, Blşm sttüsü, Gaz Üverstes,

Detaylı

TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ

TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ Clt 2, Sayı 2, 2010 ISSN: 1309-8020 (Ole) TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ Ahmet AYDIN Balıkesr Üverstes Badırma İ.İ.B.F. Kampüsü, Çaakkale Yolu 2.Km. Badırma/Balıkesr E-posta: ahmetayd10@gmal.com

Detaylı

Ergonomik Ürün Tasarımına Bütünleşik Bir Yaklaşım

Ergonomik Ürün Tasarımına Bütünleşik Bir Yaklaşım Sakarya Üverstes Fe Blmler Esttüsü Dergs, Vol(No): pp, year SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ SAKARYA UNIVERSITY JOURNAL OF SCIENCE e-issn: 2147-835X Derg sayfası: http://dergpark.gov.tr/saufeblder

Detaylı

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ Eskşehr Osmangaz Ünverstes Sosyal Blmler Dergs Clt: 6 Sayı: 2 Aralık 2005 BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ İrfan ERTUĞRUL Pamukkale Ünverstes İİBF, Denzl ÖZET Günümüzde

Detaylı

EKONOMİK YÜK DAĞITIMI İÇİN YENİ BİR ALGORİTMA VE HESAPLAMA YÖNTEMİ

EKONOMİK YÜK DAĞITIMI İÇİN YENİ BİR ALGORİTMA VE HESAPLAMA YÖNTEMİ EKONOMİK YÜK DAĞITIMI İÇİN YENİ BİR AGORİTMA VE HESAAMA YÖNTEMİ Nurett Çetkaya Abdullah Ürkmez İsmet Erkme Takut Yalçıöz 4, Selçuk Üverstes Elektrk-Elektrok Mühedslğ Bölümü Koya ODTÜ Elektrk-Elektrok Mühedslğ

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '1 Elektrk - Elektrok ve Blgsayar Mühedslğ Sempozyumu, 9 Kasım - 1 Aralık 1, Bursa Artırma/Azaltma Lmtl ve Yasak İşletm Bölgel Ekoomk Güç Dağıtımı Problemler Yerçekmsel Arama Algortması le Çözümü

Detaylı

AES S Kutusuna Benzer S Kutuları Üreten Simulatör

AES S Kutusuna Benzer S Kutuları Üreten Simulatör AES S Kutusua Bezer S Kutuları Ürete Smulatör M.Tolga SAKALLI Trakya Üverstes Blgsayar Mühedslğ tolga@trakya.edu.tr Erca BULUŞ Trakya Üverstes Blgsayar Mühedslğ ercab@trakya.edu.tr Adaç ŞAHİN Trakya Üverstes

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ Joural of Ecoomcs, Face ad Accoutg (JEFA), ISSN: 48-6697 Year: 4 Volume: Issue: 3 CURRENCY EXCHANGE RATE ESTIMATION USING THE GREY MARKOV PREDICTION MODEL Omer Oala¹ ¹Marmara Uversty. omeroala@marmara.edu.tr

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

ANFIS VE ARMA MODELLERİ İLE ELEKTRİK ENERJİSİ YÜK TAHMİNİ

ANFIS VE ARMA MODELLERİ İLE ELEKTRİK ENERJİSİ YÜK TAHMİNİ Gaz Üv. Müh. Mm. Fak. Der. J. Fac. Eg. Arch. Gaz Uv. Clt 5, No 3, 60-60, 00 Vol 5, No 3, 60-60, 00 ANFIS VE ARMA MODELLERİ İLE ELEKTRİK ENERJİSİ YÜK TAHMİNİ Özka DEMİREL, Ada KAKİLLİ ve Mehmet TEKTAŞ Elektrk

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Pel İYİ GENETİK ALGORİTMA UYGULANARAK VE BİLGİ KRİTERLERİ KULLANILARAK ÇOKLU REGRESYONDA MODEL SEÇİMİ İSTATİSTİK ANABİLİM DALI ADANA, 006

Detaylı

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır.

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır. OLİGOOLİ Olgopolc pyasa yapısını ncelemek çn ortaya atılmış bell başlı modeller şunlardır.. Drsekl Talep Eğrs Model Swezzy Model: Olgopolstc pyasalardak fyat katılığını açıklamak çn gelştrlmştr. Olgopolcü

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract SESSION 1 Türkye dek Kout Fyatlarıı Tahmde Hedok Regresyo Yötem le Yapay Sr Ağlarıı Karşılaştırılması Comparso of Hedoc Regresso Method ad Artfcal Neural Networks to Predct Housg Prces Turkey Asst. Prof.

Detaylı

Açık Artırma Teorisi Üzerine Bir Çalışma

Açık Artırma Teorisi Üzerine Bir Çalışma Kocael Üerstes Sosyal Blmler Esttüsü Dergs (4) 27 / 2 : 5-77 Açık Artırma Teors Üzere Br Çalışma Şeket Alper Koç Özet: Bu çalışmada haleler üzere teork r araştırma yapılacaktır. Belrl arsayımlar altıda

Detaylı

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA İstabul Tcaret Üverstes Fe Bller Dergs Yıl:7 Sayı:4 Güz 2008/2 s.5-34 BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE

Detaylı

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN PORTFÖY OPTİMİZASYOU Doç.Dr.Aydın ULUCA KARAR VERME Karar verme, ş dünyasının çalışmasını sağlayan temel unsurlardandır. Tüm yönetcler, bulundukları faalyet alanı ve kademelernden bağımsız olarak stratejk

Detaylı

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ İMAK-asarım İmalat Aalz Kogres 6-8 Nsa 6 - ALIKESİR ÉZIER YAKLAŞIMI İLE İR YÜZEYİN OLUŞURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ ÜREİLMESİ Cha ÖZEL, Erol KILIÇKAP Fırat Üverstes, Maka Mühedslğ ölümü-elaziğ

Detaylı

FİNANSAL MODELLEME. Doç.Dr.Aydın ULUCAN Hacettepe Üniversitesi

FİNANSAL MODELLEME. Doç.Dr.Aydın ULUCAN Hacettepe Üniversitesi FİNANSAL MODELLEME Doç.Dr.Aydın ULUCAN Hacettepe Ünverstes KARAR VERME Karar verme, ş dünyasının çalışmasını sağlayan temel unsurlardandır. Tüm yönetcler, bulundukları faalyet alanı ve kademelernden bağımsız

Detaylı

ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA YÖNTEMİ İLE ÇEVRE YÖNETİM SİSTEMLERİ PROBLEMLERİNE ÇÖZÜM YAKLAŞIMI

ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA YÖNTEMİ İLE ÇEVRE YÖNETİM SİSTEMLERİ PROBLEMLERİNE ÇÖZÜM YAKLAŞIMI Marmara Üverstes İ.İ.B.F. Dergs YIL 006, CİLT XXI, SAYI ÇOK AMAÇLI DOĞRUSAL KESİRLİ PROGRAMLAMA YÖNTEMİ İLE ÇEVRE YÖNETİM SİSTEMLERİ PROBLEMLERİNE ÇÖZÜM YAKLAŞIMI S. Eral DİNÇER ABSTRACT I real worl ecso

Detaylı

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME V. Ulusal Üretim Araştırmaları Sempozyumu, İstabul Ticaret Üversitesi, 25-27 Kasım 2005 İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME Tamer EREN

Detaylı

CİROSU DÜŞÜK PERAKENDE NOKTALARINA UNİLEVER ÜRÜNLERİNİN DAĞITIMI İÇİN KARMA SİSTEM TASARIMI

CİROSU DÜŞÜK PERAKENDE NOKTALARINA UNİLEVER ÜRÜNLERİNİN DAĞITIMI İÇİN KARMA SİSTEM TASARIMI Edüstr Mühedslð Dergs Clt: 18 Sayý: 3 Saya: (13-30 Maka Mühedsler Odasý CİROSU DÜŞÜK PERAKEDE OKTAARIA UİEVER ÜRÜERİİ DAĞITIMI İÇİ KARMA SİSTEM TASARIMI Ers KÖRPEOĞU*, Emre ADAR, Ee Burak BOZKAYA, Derya

Detaylı

Mühendislik Ekonomisi. Ders Notları. Yrd. Doç. Dr. Önder Halis BETTEMİR

Mühendislik Ekonomisi. Ders Notları. Yrd. Doç. Dr. Önder Halis BETTEMİR Mühedslk Ekooms Ders Notları Yrd. Doç. Dr. Öder Hals BETTEMİR Malatya, 207 . Mühedslk ve Mühedslk Ekooms İsaları htyaç ve stekler doğrultusuda ortaya çıka talepler çözümü mühedslk yaklaşımı le sağlaır.

Detaylı

SIMULINK kullanarak güç sistem geçici hal kararlılık analizi. Power system transient stability analysis using SIMULINK

SIMULINK kullanarak güç sistem geçici hal kararlılık analizi. Power system transient stability analysis using SIMULINK SAÜ Fe Bl Der 9. Clt,. Sayı, s. -, 5 SIMULINK kullaarak güç sstem geçc hal kararlılık aalz Serdar Ekc * ÖZ 9..5 Gelş/Receved, 4.5.5 Kabul/Accepted SIMULINK, damk sstemler modellemes, aalz ve smülasyou

Detaylı

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Üverstes Mühedslk Blmler Dergs Pamukkale Uversty Joural of Egeerg Sceces Kabul Edlmş Araştırma Makales (Düzelememş Sürüm) Accepted Research Artcle (Ucorrected Verso) Makale Başlığı / Ttle Karayolu

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI DAĞILIMLAR İÇİN EN ÇOK OLABİLİRLİK VE FARKLI KAYIP FONKSİYONLARI ALTINDA BAYES TAHMİN EDİCİLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI Gülca GENCER

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

Yapay Arı Kolonisi Algoritması İle Elektrik Güç Sistemi Optimal Yakıt Maliyetinin Belirlenmesi

Yapay Arı Kolonisi Algoritması İle Elektrik Güç Sistemi Optimal Yakıt Maliyetinin Belirlenmesi 6 th Iteratoal Advaced Techologes Symposum (IATS 11), 16-18 May 011, Elazığ, Turkey Yapay Arı Kolos Algortması İle Elektrk Güç Sstem Optmal Yakıt Malyet Belrlemes A Öztürk 1, S Çobalı, S Duma, S Tosu 4,

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi Yüzücü Yıl Üverstes, Zraat Fakültes, Tarım Blmler Dergs (J. Agrc. Sc.), 008, 18(1): 1-5 Araştırma Makales/Artcle Gelş Tarh: 10.06.007 Kabul Tarh: 7.1.007 Lojstk Regresyoda Meydaa Gele Aşırı Yayılımı İcelemes

Detaylı

ÇOK AMAÇLI DOĞRUSAL PROGRAMLAMADAN SİSTEM TASARIMINA: DE NOVO. Özet

ÇOK AMAÇLI DOĞRUSAL PROGRAMLAMADAN SİSTEM TASARIMINA: DE NOVO. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 0.0.00 Clt:, Sayı: 4, Yıl: 00, Sayfa: -74 Yayına Kabul Tarh: 7.0.0 ISSN: 0-84 ÇOK AMAÇLI DOĞRUSAL PROGRAMLAMADAN SİSTEM TASARIMINA: DE

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir.

Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir. 2. DOĞRUSAL PROGRAMLAMA (DP) 2.1. DP i Taımı ve Bazı Temel Kavramlar Model: Bir sistemi değişe koşullar altıdaki davraışlarıı icelemek, kotrol etmek ve geleceği hakkıda varsayımlarda bulumak amacı ile

Detaylı