DİJİTAL KONTROL SİSTEMLERİNDE DAYANIKLI KARARLILIK ANALİZİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DİJİTAL KONTROL SİSTEMLERİNDE DAYANIKLI KARARLILIK ANALİZİ"

Transkript

1 DİJİTAL KONTROL SİSTEMLERİNDE DAYANIKLI KARARLILIK ANALİZİ Yasi KARATAŞ ve Nusret TAN Yüksek Lisas Öğrecisi İöü Üiversitesi Mühedislik Fakültesi Elektrik-Elektroik Mühedisliği Bölümü 448 Malatya. e-posta: Aahtar söcükler: Parametre belirsiliği Kararlılık Kharitoov teoremi Kear teorem Dijital iterval poliomlar Değer kümesi ABSTRACT This paper deals with the robust stability aalysis of digital cotrol systems with ucertaities. It is well kow that the ucertaities i the physical systems is a uavoidable fact. Therefore takig ucertaities ito accout while aalysig cotrol systems gives advatages. I this work the methods related to the stability of digital cotrol systems with parametric ucertaity are studied.. GİRİŞ Kotrol sistemlerii aali ve tasarımı yapılırke belirsiliği hesaba katılması sistemi dayaıklığı açısıda öem aretmektedir. Geellikle kotrol sistemleride parametre belirsiliği ve model belirsiliği olmak üere iki çeşit belirsilik yapısıda bahsedilir []. Parametre belirsiliği kousu öellikle Kharitoov teoremi [] ile beraber öem kaamış ve bu alada birçok çalışmalar yapılmıştır [-5]. Kharitoov teoremi aralık(iterval) belirsilik yapısı içere bir iterval poliomu kararlılığıı kümedeki dört Kharitoov poliomu kararlılığıı test edilmesiyle elde edilebileceğii ifade etmektedir. Dolayısıyla kararlılık problemi sosu bir kümede solu ve sadece dört tae poliom içere bir kümeye idirgemiştir. Fakat bu öemli teorem iterval dijital kotrol sistemlerie uygulaamamaktadır. Çükü Kharitoov teoremi kararlılık bölgesi sol yarı dülem ola sürekli amalı kotrol sistemleri içi geçerlidir. Bu tip sistemleri kararlılığıa Hurwit kararlılık deir. Bir dijital kotrol sistemide ise kararlılık bölgesi birim çemberdir ve bu çeşit sistemleri kararlılığıa da Schur kararlılık deir []. Dolayısıyla Kharitoov teoremii kullaarak iterval bir ayrık amalı poliom kümesii bütü köklerii birim çemberi içeriside olum olmadığıı test edemeyi. Belirsi bir ayrık amalı poliom kümesii kararlılığı içi kullaılabilecek bir metot kear(edge) teoremidir [5]. Bu teoremde yararlaarak parametre belirsiliği içere dijital kotrol sistemlerii aalii yapılabilir. Bu çalışmada ayrık amalı iterval poliomları kararlılığı iceledi. Değer kümelerii hesaplaabilmesi içi bir yötem öerildi. İterval dijital kotrol sistemlerii dayaıklılık aalii ile ilgili çalışmalar yapıldı. Parametre belirsiliği içere dijital kotrol sistemlerii dayaıklı aalii içi kullaılabilecek gerekli programlar Matlab ortamıda yaıldı.. KHARİTONOV TEOREMİ VE DİJİTAL İNTERVAL POLİNOMLAR Bir sürekli amalı iterval poliom kümesi şu formda yaılabilir P ( s q) + as + as + as + + a s () burada q = [ a a... a ] ai [ ai ai ] i =... a i ve a i i. belirsilik a i i alt ve üst limitlerii göstermektedir. Bu poliom kümesii kararlı olabilmesi içi Kharitoov teoremie göre dört Kharitoov poliomuu kararlı olması yeterlidir. Dört Kharitoov poliomu şu şekilde yaılabilir. p p 4 p p () Bu souç aslıda Mikhailov kriterii kullaarak kolayca ispatlaabilir. Mikhailov kriterie göre.

2 derecede bir p(s) poliomuu kararlı olabilmesi içi p ( jω) ı poitif reel eksede başlayarak saat yöüü terside eksei kesmesi gerekir. Yai sıfırı dışlaması kuralıa (ero exclusio priciple) [] göre p ( jω) ı orijide geçmemesi gerekir. Dolayısıyla bir iterval poliomu herhagi bir sabit frekastaki değer kümesii şekil de görüldüğü gibi kearları reel ve saal eksee paralel ola bir dikdörtge olduğu kolayca gösterilebilir. Bu dikdörtgei köşelerii Kharitoov poliomları oluşturur ve bu dikdörtgee Kharitoov dikdörtgei deir. Bu dikdörtgei kearları reel ve saal ekselere paralel olduğu içi orijii dikdörtgesel değer kümesii içide veya dışıda kalması köşe oktalarıı kullaarak kolayca test edilebilir. Şekil de de görüldüğü gibi köşe oktaları Kharitoov poliomlarıa karşılık gelmektedir. p (jω) Sa p (jω * ) P(jω * q) p (jω * ) p (jω * ) p (j) p 4 (jω * ) Re Şekil : Kharitoov dikdörtgei ve p i Mikhailov eğrisi Öreği ikici derecede bir iterval poliom P ( s q) + as + as + as () verilmiş olsu burada a [6] a [8] a [48] ve a [ ]. s = jω yerie koursa P ( jω q) aω + j( aω + aω ) (4) elde edilir. Burada reel ve saal kısımda görüle belirsi parametreleri birbiride bağımsı olduğu görülmektedir. Dolayısıyla her bir frekas değeride P( jω q) ı değer kümesi kearları reel ve saal eksee paralel ola bir dikdörtgedir. Bu poliom kümesii değer kümeleri ω 4 aralığıda 5 frekas değeride Şekil de görülmektedir. Sıfır değer kümesii içide olmadığı içi bu belirsi poliom kümesi kararlıdır. Bu kümei dört Kharitoov poliomu p( s) = + 8s + 8s + s p = + s + 8s + s (5) p( s) = 6 + 8s + 4s + s p4 = 6 + s + 4s + s şeklide yaılabilir. Bu dört poliomu da kararlı olduğu test edilebilir. Dolayısıyla sürekli amalı bir iterval poliomu kararlılığı dört Kharitoov poliomu kararlılığı test edilerek buluabilir. Bu soucu ayrık amalı iterval poliomlar içi geçerli olmadığıı aşağıdaki ierval poliomu karalılığıda görebiliri. 4 P ( 4 + a + a + a + a (6) burada a =. 96 a [.6.] a [.4.5] a [. ] ve a 4 =. Dört Kharitoov poliomuu yai 4 p( = p ( = (7) 4 p( = p4 ( = Schur kararlı olduğu test edilebilir. Fakat kümeye ait ola 4 p( = poliomu Schur kararlı değildir. Dolayısıyla dijital iterval poliomlar içi Kharitoov polyomlarıı kararlı olması yeterli değildir. Buu edei jωt poliomda = e burada T örekleme perytodudur yaıldığıda belirsi parametreler reel ve saal kısımda birbirlerie lieer bağımlı olarak görüleceklerdir. Dolayısıyla değer kümesi kearları reel ve saal ekselere paralel ola dikdörtge değildir. Öyleyse dijital bir iteval poliomu kararlılığıı test edilebilmesi içi poliomu değer kümesii hesaplaabilmesi gerekir. Buu içi kear(edge) teoremi kullaılabilir.. DİJİTAL İNTERVAL POLİNOMLARIN DEĞER KÜMESİ VE KARARLILIĞI Bir dijital iterval poliom kümesi P ( + a + a + + a (9) formuda gösterilebilir. Burada k = [ a a... a ] ai [ ai ai ] i =... a i ve a i i. belirsilik a i i alt ve üst limitlerii göstermektedir. Kear teoremie göre tae belirsi parametre içere bir poliom ailesii herhagi bir sabit frekastaki değer kümesi bir poligodur ve bu poligou tae

3 a köşe kear a a a a a Şekil : Deklem () teki iterval poliomu ω 4 içi değer kümesi Belirsilik küpü a) köşesi ve tae de etki(exposed) kearı vardır. Böyle bir poliom kümesii Schur kararlı olabilmesi içi bütü etki kearları Schur kararlı olması gerekir veya değer kümesii sıfırı içie almaması gerekir. Öreği üç tae belirsi parametre içere bir poliomu parametre dülemideki belirsilik küpü ve kompleks dülemdeki yasıması Şekil (a) ve (b) de görülmektedir. Sa c c c 4 c 7 c 6 c 8 Deklem (9) daki poliomu tae köşe poliomu aşağıdaki düede yaılabilir. c ( + a + a + K + a c ( + a + a + K + a c( + a + a + K + a M () c ( + a + a + K + a Etki kearlar elde edilirke köşe poliomlarıda yararlaılır. Öreği deklem () a baktığımıda c ( ve c ( poliomlarıda sadece a parametresi alt ve üst limitlerdeki değerleri almaktadır ve diğer parametreler belirsiliği alt limitideki değerleride sabitlemişlerdir. Öyleyse uç oktaları c ( ve c ( ola bir etki kear mevcuttur. Bu etki kear şu şekilde gösterilebilir e ( c c ) = λc ( + ( λ) c ( λ [] () Böyle bir etki kear bir ayırt(segmet) diye de adladırılır. Beer şekilde diğer etki kearlar da oluşturulabilir. Bu etki kearlar kullaılarak dijital iterval poliomu değer kümesi elde edilir. c c 5 b) Şekil : Üç tae belirsi parametre içere bir poliomu a) parametre dülemideki belirsilik küpü ve b) kompleks dülemdeki yasıması 4. ÖRNEKLER Re Örek : Bir dijital ierval poliom şu şekilde verilsi P ( = [.5] () görüldüğü gibi bu ierval poliom kümesi sadece bir tae parametre belirsiliği içermektedir. Dolayısıyla bu poliom kümesi içi tae köşe poliomu ve bir tae kear elde edilebilir. Köşe poliomları c ( = () c ( = c ( ve c ( i Schur kararlı olduğu Jury testii uygulayarak veya c ( ve c ( i köklerii bularak test edilebilir. Bütü poliom kümesii kararlı olup olmadığıı test edebilmek içi öceki bölümde verile yötem kullaılabilir. Köşe veya uç poliomlarıı kullaarak

4 e( c c ) = λc ( + ( λ) c ( (4) = (.5λ) etki kearı elde edilebilir burada λ []. Bu kearı ω 4 içi değer kümesi Şekil 4 de görülmektedir. Şekilde de gölediği gibi sıfır değer kümesii dışıda kalmaktadır. Dolayısıyla verile poliom kümesi Schur kararlıdır. Şekil 4: Delem () de verile poliomu ω 4 içi değer kümesi Örek : Birim geribeslemeli bir dijital iterval kotrol sistemide a + a G( = ( + a ) (5) a [.6.5] a [.5.5] ve a [.45.5] ise kotrol sistemii kararlılığıı iceleyelim. Sistemi karakteristik deklemi P ( = + G( = (6) şeklide yaılabilir. Burada P ( = + a + a + a (7) elde edilir. Dolayısıyla dijital iterval kotrol sistemii kararlılık problemi dijital iterval poliomları kararlılık problemie döüştürülmüş oldu. Deklem (7) deki belirsi poliom kümesii kararlılığıı test edebilmek içi değer kümesi yaklaşımı kullaılabilir. Bu poliomda tae belirsi parametre olduğu içi =8 tae köşe poliomu ve x = tae de etki kear elde edilebilir. Köşe poliomları c ( = c( = c( = c4( = c5( = (8) c6( = c7 ( = c8 ( = ve deklem () de yararlaarak e( c c) e ( c c) e ( c c5) e ( c c4) e( c c6) e ( c c4) e ( c c7 ) e ( c 4 c8 ) e( c 5 c6) e ( c 5 c7) e ( c 6 c8 ) ve e( c 7 c8 ) etki kearları elde edilir. Bu etki kearları kullaarak deklem (7) deki iterval poliomu değer kümesi elde edilebilir. Öreği ω = rad/s içi değer kümesi Şekil 5 te görülmektedir. ω 8 içi değer kümeleri Şekil 6 da görülmektedir. Şekil 6 bie dijital kotrol sistemii kararlı olduğuu yai kararkteristik deklemi bütü köklerii birim çemberi içeriside olduğuu ifade etmektedir. Ayrıca kear teoremie göre etki kearları kök uayı iterval poliomu kök uayıı içie alır. Deklem (7) deki iterval poliomu etki kearlarıı kök uayı Şekil 7 de verilmiştir. Şekilde de görüleceği gibi kök uayı birim çemberi içide kalmaktadır. Dolayısıyla sistem kararlıdır. Şekil 5: Deklem (7) deki poliomu ω = rad/s deki değer kümesi

5 KAYNAKLAR Şekil 6: Deklem (7) deki poliomu ω 8 içi değer kümesi Şekil 7: Deklem (5) deki dijital kotrol sistemi karakteristik deklemii kök uayı 5. SONUÇLAR Bu bildiride parametre belirsiliği içere dijital kotrol sistemleri dayaıklı kararlılık aalii iceledi. Kharitoov teoremi dijital iterval poliomları kararlılık aalii içi geçerli değildir. Kear teoremii kullaarak bir dijital iterval poliomu değer kümesi elde edilebilir. Değer kümesiyle beraber sıfırı dışlaması kuralıı kullaarak bir dijital ierval poliomu Schur kararlılığıı test edilebileceği gösterildi. Matlab ortamıda gerekli yaılımlar geliştirilmiş olup bu yaılımlar parametre belirsiliği içere dijital kotrol sistemlerii aalii içi kullaılabilecektir. İleriye yöelik olarak belirsilik içere dijital kotrol sistemlerii frekas cevabı aalii yai Bode Nyquist ve Nichols diyagramlar iceleecektir. [] Bahattacharyya S. P. Chapellat H. Keel L. H. Robust Cotrol: The Parametric Approach Pretice Hall 995. [] Kharitoov V. L. Asymptotic Stability of a Equilibrium Positio of a Family of Systems of Liear Differetial Equatios Differetial Equatios Vol [] Bartlett A. C. Tesi A. Vicio A.: Frequecy Respose of Ucertai Systems with Iterval Plats IEEE Tras. Automat. Cotr. Vol [4] Hollot C. V. Bartlett A. C.. O the Nyquist Evelope of a Iterval Plat Family IEEE Tras. Automat. Cotr. Vol [5] Ta N. Atherto D. P. Frequecy Respose of Ucertai Systems: A q-covex Parpolygoal Approach IEE Proc. Cotrol Theory ad Applicatio Vol [6] Ta N. Computatio of the Frequecy Respose of Multiliear Affie Systems IEEE Tras. o Automatic Cotrol Vol [7] Ta N. Atherto D. P. Stability ad Performace Aalysis i a Ucertai World Computig ad Cotrol Egieerig Joural Vol. 9-. [8] Fu M.: Computig the Frequecy respose of Liear Systems with Parametric Perturbatios Syst. Cotr. Lett. Vol [9] Barmish B. R. New Tools for Robustess of Liear Systems MacMilla NY 994. [] Djaferis T. E. Robust Cotrol Desig: A Polyomial Approach Kluwer Academic Publishers Bosto 995. [] Ackerma J. Robust Cotrol: Systems with Ucertai Physical Parameters Spriger-Verlag 99. [] Hollot C. V. Bartlett A. C.. O the Nyquist Evelope of a Iterval plat family IEEE Tras. Automat. Cotr. Vol [] Katbab A. Jury E. I.. Robust Schur-Stability of Cotrol Systems with Iterval Plats It. J. of Cotrol Vol [4] Katbab A. Jury E. I. Geeraliatio ad Comparsio of Two Recet Frequecy Domai Stability Robustess Results It. J. of Cotrol Vol [5] Bartlett A. C. Hollot C. V. Li H. Root Locatio of a Etire Polytope of Polyomials: It Suffices to Check the Edges Mathematics of Cotrols Sigals ad Systems. Vol

6 Yasi KARATAŞ: 979 Sivas Gürü doğumludur. Yüksek öğreimii yılıda tamamladı. İöü Üiversitesi Mühedislik Fakültesi Elektrik- Elektroik Mühedisliği Bölümü de 5 yılıda yüksek lisas eğitimie başladı. Şu ada yüksek lisas te aşamasıda çalışmalarıı sürdürmektedir. Kotrol sistemleri ve uygulamaları ile ilgilemektedir. Nusret TAN: 97 yılıda Malatya Doğaşehir doğumludur. 994 yılıda Hacettepe Üiversitesi Elektrik-Elektroik Mühedisliği Bölümü de meu oldu. 995 yılıda İöü Üiversitesi Mühedislik Fakültesi Elektrik-Elektroik Mühedisliği Bölümü de araştırma görevlisi olarak göreve başladı. Ayı yıl doktora eğitimi içi İgiltere de Sussex Üiversitesie gitti. Doktora eğitimii yılıda tamamlayarak tekrar İöü Üiversitesie dödü. 4 yılıda doçetlik üvaıı aldı. Geel olarak kotrol sistemlerii aalii ve tasarımıyla ilgilemektedir.

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SÜLEYMNİYE EĞİTİM KURUMLRI MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SORULR. li ile etül ü de içide buluduğu 4 erkek ve 6 bayada oluşa bir grupta

Detaylı

2.2. Fonksiyon Serileri

2.2. Fonksiyon Serileri 2.2. Foksiyo Serileri Taım.. Herhagi bir ( u (x reel (gerçel değerli foksiyo dizisi verilsi. Bu m foksiyo dizisii tüm terimlerii toplamıa, yai u m (x + u m+ (x + u m+2 (x + u m+3 (x + + u m+ (x + = k=m

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

SİSTEM ANALİZİ. >> x = [ ; ; ];

SİSTEM ANALİZİ. >> x = [ ; ; ]; SİSTEM ANALİZİ Ders otları yaıda yardımcı referas kayaklar: System Aalysis ad Sigal Processig, 1998, Philip Debigh A Itrductio to Radom Vibratios, Spectral & Wavelet Aalysis, 3 rd ed., 1993 Logma Scietific

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Saısal Çözümleme SAYISAL ÇÖZÜMLEME 8. Hafta İNTERPOLASYON Saısal Çözümleme 2 İÇİNDEKİLER Ara Değer Hesabı İterpolaso Doğrusal Ara Değer Hesabı MATLAB ta İterpolaso Komutuu Kullaımı Lagrace

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ Gai Üiv. Müh. Mim. Fak. Der. Joural of the Faculty of Egieerig ad Architecture of Gai Uiversity Cilt 3, No, 73-79, 15 Vol 3, No, 73-79, 15 GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

Detaylı

MATLAB VE ASP.NET TABANLI WEB ARAYÜZÜ KULLANILARAK DOĞRUSAL OLMAYAN SİSTEMLERİN ANALİZİ

MATLAB VE ASP.NET TABANLI WEB ARAYÜZÜ KULLANILARAK DOĞRUSAL OLMAYAN SİSTEMLERİN ANALİZİ Gazi Üiv. Müh. Mim. Fak. Der. Joural of the Faculty of Egieerig ad Architecture of Gazi Uiversity Cilt 27, No 4, 795-806, 2012 Vol 27, No 4, 795-806, 2012 MATLAB VE ASP.NET TABANLI WEB ARAYÜZÜ KULLANILARAK

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: üme Teorisi, Örek Uzay, Permütasyolar ve ombiasyolar üme avramı üme İşlemleri Deey, Örek Uzay, Örek Nokta ve Olay avramları Örek Noktaları Sayma Permütasyolar ombiasyolar Parçalamalar (Partitio)

Detaylı

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri =2. Kısmı Başı= 14. Kümeleri Niceliklerii Kıyaslaışı ve Sosuzluğu Mertebeleri Sosuz kümeleri iceliklerii kıyaslamak içi, öğe sayısı yaklaşımı yetersizdir. Farklı bir yaklaşım gereklidir. İki küme A, B

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı Veri edir? p Veri edir? Geometrik bir bakış açısı p Bezerlik Olasılıksal bir bakış açısı p Yoğuluk p Veri kalitesi p Veri öişleme Birleştirme Öreklem Veri küçültme p Temel bileşe aalizi (Pricipal Compoet

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

SİSTEMLERİN ZAMAN CEVABI

SİSTEMLERİN ZAMAN CEVABI DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici

Detaylı

YÜKSEK LİSANS TEZİ. Müh. Özkan KARABACAK. Yrd.Doç.Dr. Neslihan Serap ŞENGÖR. Prof.Dr. Leyla GÖREN (İ.T.Ü.)

YÜKSEK LİSANS TEZİ. Müh. Özkan KARABACAK. Yrd.Doç.Dr. Neslihan Serap ŞENGÖR. Prof.Dr. Leyla GÖREN (İ.T.Ü.) İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANAHTARLANMIŞ DOĞRUSAL SİSTEMLERİN KARARLILIĞININ İNCELENMESİ YÜKSEK LİSANS TEZİ Müh. Özka KARABACAK Tezi Estitüye Verildiği Tarih : 25 Aralık 2006

Detaylı

3D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ

3D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ Erka BEŞDOK Bilal KASAP Jeodei ve Fotogrametri Mühedisliği Bölümü Mühedislik Fakültesi ve Bilgisayar Müh. ABD, Fe

Detaylı

ON THE TRANSFORMATION OF THE GPS RESULTS

ON THE TRANSFORMATION OF THE GPS RESULTS Niğde Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 6 Sayı -, (00), 7- GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Meti SOYCAN* Yıldız Tekik Üiversitesi, İşaat Fakültesi, Jeodezi Ve Fotogrametri Mühedisliği

Detaylı

HALL ETKİLİ AKIM TRANSFORMATÖRÜNÜN SPEKTRAL VE İSTATİSTİKSEL ANALİZİ

HALL ETKİLİ AKIM TRANSFORMATÖRÜNÜN SPEKTRAL VE İSTATİSTİKSEL ANALİZİ ISSN:306-3 e-joural of New World Scieces Academy 2008, Volume: 3, Number: 2 Article Number: A0075 NATURAL AND APPLIED SCIENCES ELECTRIC AND ELECTRONIC ENGINEERING BİR Received: September 2007 Accepted:

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

DAYANIKLI SAYISAL RESİM DAMGALAMA

DAYANIKLI SAYISAL RESİM DAMGALAMA DAYAIKLI SAYISAL DAMGALAMA Chasa CHOUSE Sogül ALBAYRAK, Bilgisayar Mühedisliği Bölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 80750, Beşiktaş, İstabul e-posta: chasac@yahoo.com e-posta:

Detaylı

DENEY 4 Birinci Dereceden Sistem

DENEY 4 Birinci Dereceden Sistem DENEY 4 Birici Derecede Sistem DENEYİN AMACI. Birici derecede sistemi geçici tepkesii icelemek.. Birici derecede sistemi karakteristiklerii icelemek. 3. Birici derecede sistemi zama sabitii ve kararlı-durum

Detaylı

DERS 5. Limit Süreklilik ve Türev

DERS 5. Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev İlk dersimizi solarıda, it sözüğü kullaılmada bu sözükle iade edile kavram ele alımıştıbak.. Bu dersimizde, it kavramıa biraz daa akıda bakaağız ve bu kavram ardımıla süreklilik

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

T.C SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ .C SELÇUK ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ CHEBYSHEV POLİNOMLARI VE BAZI UYGULAMALARI NEJLA ÇALIK YÜKSEK LİSANS EZİ İLKÖĞREİM ANABİLİM DALI KONYA, 00 ÖZE YÜKSEK LİSANS EZİ CHEBYSHEV POLİNOMLARI VE BAZI

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI -BOYUTLU (ÖKLİT) UZAYI Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a, a,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Meti OLGUN Akara Üiversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiği temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir BÖLÜM 1: VEKTÖRLER Vektörleri taımlamak içi iki yol vardır: uzayda oktalara karşılık gele bir koordiat sistemideki oktalar veya büyüklük ve yöü ola eseler. Bu kısımda, ede iki vektör taımıı buluduğu açıklaacak

Detaylı

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Joural of Research i Educatio ad Teachig OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Yard.Doç.Dr. Tüli Malkoç Marmara Üiversitesi

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

EVOLVENT DÜZ DİŞLİLERDE ALTTAN KESMENİN BİLGİSAYAR SİMÜLASYONU

EVOLVENT DÜZ DİŞLİLERDE ALTTAN KESMENİN BİLGİSAYAR SİMÜLASYONU MAKALE Cüeyt Fetvacı EVOLVENT DÜZ DİŞLİLERDE ALTTAN KESMENİN BİLGİSAYAR SİMÜLASYONU Cüeyt Fetvacı Doç.Dr., İstabul Üiversitesi, Mühedislik Fakültesi, Makie Mühedisliği Bölümü, İstabul fetvacic@istabul.edu.tr

Detaylı

TEOG 2016 FEN SORULARI FACEBOOK GRUBU

TEOG 2016 FEN SORULARI FACEBOOK GRUBU 1) Calıları kedilerie bezeye yei bireyler meydaa getirmesie üreme deir. Calılarda eşeyli ve eşeysiz olmak üzere iki çeşit üreme görülür. Hücrei yapısıda bulua kalıtsal madde, üreme olayıı e temel kavramıdır.

Detaylı

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems

FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems FGATool - Kesir Dereceli Sistemler için Grafiksel Analiz Programı FGATool Graphical Analysis Tool for Fractional Order Systems Bilal Şenol 1, Celaleddin Yeroğlu 1 1 Bilgisayar Mühendisliği Bölümü İnönü

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 1 sh Ocak 2000

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 1 sh Ocak 2000 ÖZE / ABSRAC DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: Sayı: sh. 4-45 Ocak 000 İKİ İNDİSLİ DÜZLEMSEL DAĞIIM PROBLEMİNİN MARİS DENKLEMLERİ İLE İNCELENMESİ (INVESIGAION OF WO-INDEX PLANAR

Detaylı

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir Deey 4: ayısal üzgeçler Amaç Bu deeyi amacı solu dürtü yaıtlı (FIR) ve sosuz dürtü yaıtlı (IIR) sayısal süzgeçleri taıtılması ve frekas yaıtlarıı icelemesidir. Giriş iyal işlemede süzgeçleme bir siyali

Detaylı

HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI

HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI 1. Ulusal Makie Teorisi Sempozyumu UMTS005 HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI Sadetti KAPUCU, Mahmut KAPLAN Gaziatep Üiversitesi,

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

GENELLEŞTİRİLMİŞ İKİ DEĞİŞKENLİ FİBONACCİ VE LUCAS POLİNOMLARI

GENELLEŞTİRİLMİŞ İKİ DEĞİŞKENLİ FİBONACCİ VE LUCAS POLİNOMLARI T.C. SELÇUK ÜNİVERSİTESİ EĞİTİM BİLİMLERİ ENSTİTÜSÜ İLÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ ANABİLİM DALI GENELLEŞTİRİLMİŞ İKİ DEĞİŞKENLİ FİBONACCİ VE LUCAS POLİNOMLARI Şerife TUNÇEZ YÜKSEK LİSANS TEZİ Daışma

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II 8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kotrol Sistemleri Tasarımı Frekas Yaıtı Prof. Dr. Bület E. Plati 3 Ağustos 0 Eylül 06 Taım Kararlı bir sistemi siüs girdisie sürekli rejim yaıtı Bu taımda 3 temel boyut bulumaktadır:. Kararlı bir sistem

Detaylı

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular:

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular: ALAN ETKİLİ TRANİTÖRLER (JFET) BÖLÜM 8 8 Koular: 8.1 Ala Etkili Joksiyo Trasistör (JFET) 8. JFET Karakteristikleri ve Parametreleri 8.3 JFET i Polarmaladırılması 8.4 MOFET 8.5 MOFET i Karakteristikleri

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

x A şeklinde gösterilir. Aksi durum ise x A olarak

x A şeklinde gösterilir. Aksi durum ise x A olarak BÖLÜM I OLSILIK Küme teorisi, matematiği geliştirilmesi ve öğretimide gittikçe daha fazla yararlaıla koularda biridir. yrıca olasılıkla ilgili birici bölümü temel aracıdır. Bu kısımda amaç, olasılık kousuda

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

DĐNAMĐĞĐNDE BELĐRSĐZLĐK ĐÇEREN BĐR UÇAĞIN BOYLAMASINA HAREKETĐNĐN DAYANIKLI DENETĐMĐ

DĐNAMĐĞĐNDE BELĐRSĐZLĐK ĐÇEREN BĐR UÇAĞIN BOYLAMASINA HAREKETĐNĐN DAYANIKLI DENETĐMĐ DĐNAMĐĞĐNDE BEĐRSĐĐK ĐÇEREN BĐR UÇAĞIN BOYAMASINA HAREKEĐNĐN DAYANIKI DENEĐMĐ Güyaz ABAY Ahmet UÇAR Fırat Üiersitesi, Fe Bilimleri Estitüsü, Elektrik-Elektroik Müh. Aa Bilim Dalı, 39 Elazığ e-posta: g_ablay@yahoo.com

Detaylı

KESĠRLĠ MERTEBEDEN DEĞĠġKEN KATSAYILI DĠFERENSĠYEL DENKLEM VE DENKLEM SĠSTEMLERĠNĠN HERMĠTE COLLOCATION YÖNTEMĠ ĠLE YAKLAġIK ÇÖZÜMLERĠ

KESĠRLĠ MERTEBEDEN DEĞĠġKEN KATSAYILI DĠFERENSĠYEL DENKLEM VE DENKLEM SĠSTEMLERĠNĠN HERMĠTE COLLOCATION YÖNTEMĠ ĠLE YAKLAġIK ÇÖZÜMLERĠ KESĠRLĠ MERTEBEDEN DEĞĠġKEN KATSAYILI DĠFERENSĠYEL DENKLEM VE DENKLEM SĠSTEMLERĠNĠN HERMĠTE COLLOCATION YÖNTEMĠ ĠLE YAKLAġIK ÇÖZÜMLERĠ Nilay AKGÖNÜLLÜ PĠRĠM DOKTORA TEZĠ MATEMATĠK GAZĠ ÜNĠVERSĠTESĠ FEN

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1 S Ü Fe Ed Fa Fe Derg Sayı 7 (6-8, KONYA Bir Sııf Jacobi Matrisi İçi Özdeğer Problemi Oza ÖZKAN Selçu Üiversitesi, Fe-Edebiyat Faültesi, Matemati Bölümü 479 Kampüs, Koya simetri Jacobi matrislerii özdeğerleri

Detaylı

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ SĠRKÜLANT MATRĠSLERĠN SAYISAL ĠġARET ĠġLEMEDE KULLANIMI Ahmet ÖTELEġ YÜKSEK LĠSANS TEZĠ Matematik Aabilim Dalıı Ağustos-0 KONYA Her Hakkı Saklıdır ÖZET

Detaylı

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI Doç. Dr. Cihat ARSLANTÜRK Doç. Dr. Yusuf Ali KARA ERZURUM BÖLÜM MATEMATİKSEL TEMELLER ve HATA ANALİZİ..

Detaylı

Bu bölümde birkaç yak nsak dizi örne i daha görece iz.

Bu bölümde birkaç yak nsak dizi örne i daha görece iz. 19B. Yak sak Gerçel Dizi Örekleri Bu bölümde birkaç yak sak dizi öre i daha görece iz. Verdi imiz örekleri her biri hem kedi bafl a hem de kulla la yötem aç s da öemlidir. Örek 19B.1. lim 1/ = 1. Ka t:

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

HVAC SİSTEMLERİNDE AÇ-KAPA ve BULANIK MANTIK KONTROLÜN KIYASLAMALI OLARAK İNCELENMESİ

HVAC SİSTEMLERİNDE AÇ-KAPA ve BULANIK MANTIK KONTROLÜN KIYASLAMALI OLARAK İNCELENMESİ 11 ULUSAL TESİSAT MÜHENDİSLİĞİ KONGRESİ 17/20 NİSAN 2013/İZMİR _ 1729 HVAC SİSTEMLERİNDE AÇ-KAPA ve BULANIK MANTIK KONTROLÜN KIYASLAMALI OLARAK İNCELENMESİ Şahi YİĞİT Kadir BÜYÜKÖZKAN Fati SÖNMEZ Burha

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Üiversitesi Mühedislik Bilimleri Dergisi Pamukkale Uiversity Joural of Egieerig Scieces Taşıt savrulma diamiği kotrol sistemleride zama gecikmesi etkisii zama gecikmesi gözleyicisi kullaılarak

Detaylı

5. BORULARDAKİ VİSKOZ (SÜRTÜNMELİ) AKIM

5. BORULARDAKİ VİSKOZ (SÜRTÜNMELİ) AKIM 5. ORURKİ İSKOZ (SÜRTÜNMEİ) KIM 5.0. oru Sistemleri Çözüm Yötemleri oru sistemleriyle ilgili problemleri çözümüde tip çözüm yötemi vardır. ular I. Tip, II. Tip ve III. Tip çözüm yötemleridir. u çözüm yötemleride

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğreciler, Matematik ilköğretimde üiversiteye kadar çoğu öğrecii korkulu rüyası olmuştur. Bua karşılık, istediğiiz üiversitede okuyabilmeiz büyük ölçüde YGS ve LYS sıavlarıda matematik testide

Detaylı

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s - 18. S rl ve Arta Diziler Bu bölümde ka tlayaca m z teoremi, arta ve üstte s - rl bir gerçel say dizisii üsts ra çarpmas a ramak kal r biçimide özetleyebiliriz. (Üsts r kavram Bölüm 19 da görece iz.) flte

Detaylı

Yüksek ve Geniş Arazi Şekillerinin Varlığı Halinde Yer Dalgası Yayılımı ve Sistem Kayıpları

Yüksek ve Geniş Arazi Şekillerinin Varlığı Halinde Yer Dalgası Yayılımı ve Sistem Kayıpları Yüksek ve Geiş Arazi Şekillerii Varlığı Halide Yer Dalgası Yayılımı ve Sistem Kayıpları Burak Polat ÜBİAK Marmara Araştırma Merkezi, Bilişim ekolojileri Araştırma Estitüsü, P.K., 447, Gebze, Kocaeli polat@btae.mam.gov.tr

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

Analitik. Geometri. Prof. Dr. Salim YÜCE. 3. Baskı

Analitik. Geometri. Prof. Dr. Salim YÜCE. 3. Baskı Aalitik Geometri Prof. Dr. Salim YÜCE 3. Baskı Prof. Dr. ANALİTİK GEOMETRİ ISBN 978-605-318-811-7 DOI 10.14527/9786053188117 Kitap içeriğii tüm sorumluluğu yazarlarıa aittir. 2017, PEGEM AKADEMİ Bu kitabı

Detaylı

Paralel Hesaplama Kullanılarak Doğrusal Olmayan Sistemlerin Analizi

Paralel Hesaplama Kullanılarak Doğrusal Olmayan Sistemlerin Analizi 6 th Iteratioal Advaed Tehologies Symposium (IATS 6-8 May 2 Elazığ Turkey Paralel Hesaplama Kullaılarak Doğrusal Olmaya Sistemleri Aazi S. Kaçar Ġ. Çakaya 2 Sakarya Üiversitesi Türkiye skaar@sakarya.edu.tr

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

Galois cisimleri ve en yüksek çözümlü 2 k-1 tasarmlarnn oluturulmas

Galois cisimleri ve en yüksek çözümlü 2 k-1 tasarmlarnn oluturulmas www.istatistikciler.org statistikçiler Dergisi 3 (00) 45-53 statistikçiler Dergisi Galois cisimleri ve e yüksek çözümlü k- tasarmlar oluturulmas Naza Daacolu Siop Üiversitesi Fe-Ed. Fak. statistik Bölümü

Detaylı