denklemini x=0 adi nokta civarında çözünüz.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "denklemini x=0 adi nokta civarında çözünüz."

Transkript

1 dklmii = adi okta ivarıda çözüüz. Rküra bağıtıı DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

2 y +y +( /6y= ( dklmi içi = oktaıı düzgü tkil okta olduğuu götri, İdi dklmii köklrii bulu v çözü. P( = = = = tkil okta içi Q( m p = lim ( = lim q = lim P( /6 = tkil oktaı düzgü tkil oktadır. F(r= r(r-+p r+q dklmid yrlri koura r y= a y = (r+a r+- r /6 idi dklmi köklr r= / y = (r+(r+-a r+- ( d yrlri kour v düzlir (r+(r+-a r+ + (r+a r+ r + a r a = 6 Bu riyi r+ paratzi alabilmk içi. trimd idi ötlmi yapılıra (=- yazılıra (r+(r+-a r+ + (r+a r+ + a r r a = 6 L( ( r, ( r ( r ( r a a ( r a ( r a + r r r r r a a ( r ( ( 6 i küçük üü ahip ( r i katayıı a şitlrk idi dklmi ld dilir. (a r 6 İdi dklmii köklri ( r =/, v r =-/ dir. Rküra bağıtıı r a a il 6 r (( DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

3 a a. ( ( r /6 olur. ( dklmidki r+ i katayııda a = buluur. Böyl ( dklmid a =a 5 =...=a (+ = olur. Hr kök karşılık gl bağıtı yazılır. =,,,...vrilrk katayılar buluur. r =/ r =-/ a a a a a a a a = içi a = a = içi a = a 5 6 a a a a a a = içi a = içi a Hr kök dğri içi ayrı y= koarak çözümlr buluur a r =a r + a r+ + a r+ dklmid yrlri y ( y( / / ( a ( a a 5 a a 9 a 7 / a / ( a ( a = çilrk y gl = y (+ y ( olarak buluur. Eulr Difraiyl Dklmi y -y +6y=l difraiyl dklmii çözüüz. ( y +Ay +By=f( tipi ulr dif dklm y r y r r yazılarak ( r ( r r r 6 r y r( r r -5r+6= karaktritik dklmd (r =, r = farklı rl kök olduğuda homoj çözüm; DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

4 DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN hom y r r oj İkii taraflı dklmi çözümü içi W = itmii yazarak W= l ( f l l l u=l dv= - d u v- vdu = d l = 9 l K = du=(/d v=- l = l K y gl = 9 6 5l K K

5 LAPLACE DÖNÜŞÜMÜ f(t = t o t = t (t o t t g(t, for =,,... t o ωt. türv d i. Türvi ihtiyaımız olduğuda.türv Souç olarak. DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 5

6 f(t = o t, Burada, a = tr lapla döüşümüü buluuz. tabloda g(t = (u(t u(t DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 6

7 tr lapla döüşümüü buluuz tabloda içi Şklid yazılarak d = u(t + (t u(t u(t (t u(t = u(t + t u(t u(t u(t t u(t + u(t = t [u(t u(t ] g(t = t (u(t u(t olarak buluur. DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 7

8 5- h(t= t t v t olmak üzr y +y +y=h(t, y(=, y (= Y(S fokiyouu buluuz. Baamak fokiyouu taımıda U (t= t t U (t= t = t t t t Bu iki fokiyou farkı H(t= U (t- U (t= t t v t Şklid yazılabildiğid başlagıç dğr problmi y +y +y= U (t- U (t y(=, y (= şklid yazılabilir. Lapla döüşümüü lirliğid L[y ]+L[y ]+L[y]= L[U (t]-l[u (t] yazılarak L y Y( y( y( L y Y( y( Y( y( y( Y( y( Y( L y Y( Y Y Y ( ( ( Y ( ( Y ( ( ( Çözümü: vya DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 8

9 Y G ( ( ( olur. y= L - (Y(= L - { - H(}- L - { - H(} L F( u ( t f ( t dikkat alıarak y= u (tf(t--u (tf(t- şklid buluur. f(t fokiyou kapalı olarak vrildiğid bait kirlr ayrılarak buluur.. H ( a b ( a=, b=- v =- H ( vya H ( ( ( b a at i bt at obt ( b ( ( a a b h(t = ( ( ( ( = - -/t o t- ( -/t i t*-/ L H( u ( t h( t dikkat alıarak y(t= u (th(t--u (th(t- şklid buluur. Y(t= - -/(t- o (t-- ( -/(t- i (t-*-/ DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 9

10 6 y y y o t y (, y ( L y L y L y L o t L y Y( y( y( Y( Y( Y( L y Y( y( L y Y( Y( Y ( ( ( Bait kirlr ayırarak a b d ( ( ( ( a( +(-+b( ++(+d( -+= a -a +a-a+b +b+ - ++d -d+d= (a+= (-a+b-+d= (a+-d= -a+b+d= a+= a=- -a+b-+d= -a+b+a+d= a+b+d= a+-d= -a+b+d= -a+b+d= d=-/ b=/ a= = / / ( ( ( ( / / L ( L ( =/t t +-/it ( ( = L! ( a at t L a i at a DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

11 7 y y y i t y (, y ( L y L y L y L i t L y Y( y( y( Y( Y( Y( L y Y( y( L y Y( Y( Y ( ( ( Bait kirlr ayırarak a b d ( ( ( ( a( +(-+b( ++(+d( -+= a -a +a-a+b +b+ - ++d -d+d= (a+= (-a+b-+d= (a+-d= -a+b+d= a+= a=- -a+b-+d= -a+b+a+d= a+b+d= a+-d= -a+b+d= -a+b+d= d= b=/ a=-/ =/ / / / ( ( ( ( = / / / L ( L ( L ( ( ( y(t= -/ t +/t t +/ot DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

12 8 dklmii çözüüz.,, Tr lapla döüşümü içi tabloda. trim içi kirlr ayırma yötmi il tabloda tabloda Souç olarak DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

13 9 y -y +y=δ(t+u (t y(=, y (= başlagıç dğr problmii çözüüz. Lapla döüşümüü lirliliğid L(y -L(y +L(y=L(δ(t+L (u (t L(y = Y(- y(- y ( L(δ(t= L (u (t= - / L(y = Y(-y( L(y = Y( Y(= ( ( ( ( F(= ( ( bait kirlr ayırma yötmi il; ( ( a = b a==/, b=- ( ( = d d=-, = Y(= / ( / L - (Y(= L - ( L ( ( L ( L ( L ( L ( a at F(= ( ( L - (F(= /(- t + t =f(t L(u (tf(t-= - F( ; L - ( - F(= u (tf(t- kullaılarak y(t=- t + t +/(- t- + (t- u (t DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

14 Lapla döüşümü tablou Fokiyo f(t f(t = - {F(} t (uit-ramp futio Lapla Döüşümü f(t F( = { f(t} > > t (, a poitiv itgr > at > a i ωt o ωt > > t g(t, for =,,... t i ωt > ω t o ωt g(at at g(t > ω Sal proprty G( a Shift proprty at t, for =,,... > a t -t > - -t/t > -/T DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN

15 at i ωt at o ωt > a > a u(t δ(t a u(t ag(t a g(t g(t > > -a G( Tim-diplamt thorm G( g( G( g( g( g ( (t G( - g( - g(... g (- ( ( ( Y kovolüyo tormii kullaarak tr lapla döüşümüü buluuz ( ( ( ( Y tr lapla döüşümüü lirliliğid L - ( ( ( =L - ( - L ( L ( a at ; L ( a at yararlaarak L - ( t - f ( t, L ( t g( t i t f ( g( t d t t ( t (5 t t t d DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 5

16 y +y +y=. mrtbd homoj lir difraiyl dklm karşı gl. mrftbd difraiyl dklm itmii buluuz. Bulduğuuz. mrtbd difraiyl dklm itmii =A formuda yazıız. Çözüm: =y v =y döüşümü kullaılara v y v il y y y y y y y yrlrikoura buluur. Dolayııyla v aşağıdaki.mrtbd difraiyl dklmi ağlar. =A Örk 9, ( başlagıç dğr problmii çözüüz. 5 ( 9 ( 5 ( λ =λ =- katlı kök λ =- katlı kök içi özvktör = = 9 DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 6

17 = = gl = t + ( t+ t gl = -t + ( t+ -t Başlagıç koşuları dikkat alıarak t= il ( =, =- buluur. gl = -t -( t+ -t DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN 7

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları - Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi Sitm Diamiği v Modllmi aplac Traformayou v Trafr Fokiyou aplac Traformu : Bir itmi diamik davraışı, o itmi matmatikl modlii ifad d difraiyl dklmlri çözümüd kullaıla bir matmatikl yötmdir. f(t foiyouu aplac

Detaylı

DENEY 5 İkinci Dereceden Sistem

DENEY 5 İkinci Dereceden Sistem DENEY 5 İkici Drcd Sitm DENEYİN AMACI. İkici drcd itmi karaktritiklrii alamak.. Söüm oraı ζ i, ikici drcd itm üzridki tkiii gözlmlmk. 3. Doğal frka i, ikici drcd itm üzridki tkiii gözlmlmk. GENEL BİLGİLER

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 8. KAALILIK ESM 6 Elktrik Erji Sitmlrii Kotrolü 8. Kouu Amaç v Kapamı Bir itmi ıırlı hr giriş cvabı ıırlı i o itm kararlıdır. Sitm giriş, rfra dğrid vya bozucu dğrd olabilir. Karalılığı diğr bir taımı

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

İşaret ve Sistemler. Ders 10: Sistem Cevabı

İşaret ve Sistemler. Ders 10: Sistem Cevabı İşar v Sismlr Drs 0: Sism Cvabı Sismi İmpuls Cvabı Lir, zamala dğişmy bir sism v işarii uyguladığıı düşülim v işari lir, zamala dğişmy bir sism uyguladığıda çıkış işari bilimiyrsa, sismi lirlik özlliğii

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

Deney 2: Fark Denklemleri ve Sayısal Süzgeçlerin Geçici Davranışları Ve DZD Sistemlerin Frekans Yanıtının Frekans Bölgesinde Gösterilimi

Deney 2: Fark Denklemleri ve Sayısal Süzgeçlerin Geçici Davranışları Ve DZD Sistemlerin Frekans Yanıtının Frekans Bölgesinde Gösterilimi TEL - D : Fark Dklmlri v Saısal Süzgçlri Gçici Davraışları V DZD Sistmlri Frkas Yaıtıı Frkas Bölgsid Göstrilimi Amaç Bu di amacı, doğrusal, zamala dğişm (DZD) arık zamalı sistmlri fark dklmi göstrimii

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında Bölüm #2 Laplace Dönüşümü F (s) = f(t)e st dt s > şeklinde tanımlanan dönüşüme LAPLACE dönüşümü adı verilir ve kısaca L{f(t)} ile sembolize edilir. Diferansiyel denklemlerin Çözümünde Laplace dönüşümü

Detaylı

7. BİRİNCİ MERTEBEDEN LİNEER DENKLEM SİSTEMLERİ

7. BİRİNCİ MERTEBEDEN LİNEER DENKLEM SİSTEMLERİ 7 GİİŞ 7 BİİNCİ METEBEDEN LİNEE DENKLEM SİSTEMLEİ Yüksk mrbd lr dfrasl dklm çözümüü zor olması d l dklm mrbd lr dfrasl dklm ssm, burada da lr br problm döüşürülrk blgsaar oramıda çözüm araır Örk: Mkak

Detaylı

Calculation of Spontaneous Emission Decay Rates of an Electron Moving in a Uniform Magnetic Field

Calculation of Spontaneous Emission Decay Rates of an Electron Moving in a Uniform Magnetic Field D.Ü.Ziya Gökalp Eğitim Fakülti Drgii 9, 1-17 (007) DÜZGÜN ANYETİK ALANDA HAREKET EDEN GÖRELİ ELEKTRON İÇİN KENDİLİĞİNDEN YAYA YARI ÖÜRLERİNİN HESAPLANASI Calculatio of Spotaou Emiio Dcay Rat of a Elctro

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 3 Kontrol Sistemleri I Ara Sınav 8 Haziran 4 Adı ve Soyadı: Bölüm: No: Sınav süresi dakikadır.

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

Sönümlü Serbest Titreşim

Sönümlü Serbest Titreşim .5.. Söülü Srbs Tirşi Sosza kadar dva d sabi glikli irşilrl grçk hayaa karşılaşılaakadır. Bilidiği gibi, sis irşi harki başladıka bir sür sora hark yavaş yavaş zayıflar. olayısıyla hark dklii aşağıdaki

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

Ğ Ü Ğ Ğ Ğ Ö Ğ ş ş ö ö ş Ç ş ş Ğ Ğ Ş Ğ ş ş ö ş ş ö ş ş ö ş Ğ Ö ö ö ö Ç ş ö ö ş ş ö ş ö ö ş ö ş ö ö ö ş ş ö ş ö ö ö ş ö ö Ö ş ş ş ş ş ş Ç Ğ Ğ ö ş ş ş ö ö ş ö ö ş Ç ö ş ö ş ö ş ş ş ö ö ş ş ö ş ş ö ş ş ö ş

Detaylı

ş ş» Ğ Ş ş Ş ş Ş Ş Ş ş ş Ş Ç ş ş Ş ş ş ş ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş Ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş ş ş ş ş ş Ş ş ş ş ş Ş ş ş ş ş ş Ş ş ş ş Ü Ü ş ş ş ş Ş ş ş Ş ş Ü Ş ş Ş ş ş Ş ş Ş ş ş Ş Ş ş ş ş ş

Detaylı

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü ü ü İ ü Ç İ İ ü İ İİ İ İ ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü İ İ üü ü ü ü üü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü İ Ç ü ü ü ü ü ü ü ü ü ü ü ü ü İ ü ü ü ü ü ü ü ü Ç üü ü ü ü Ö ü ü ü ü ü ü ü ü ü ü ü ü ü Ç ü

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö Ş ö Ü ö ö ö ö Ç ö Ç Ö Ö ö ö ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö ö ö ö ö Ç ö ö ö ö ö ö ö ö ö ö ö Ş ö Ş Ç Ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö Ç Ç ö ö Ç ö Ö Ç ö ö Ç ö ö ö ö Ü ö ö Ü ö Ş ö Ü ö ö Ş ö ö Ş Ü ö Ş ö

Detaylı

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2 B T - 111 A n a l o g T r a n s m i t t e r T e k n i k K ı l a v u z u R e v 1. 2 1. Ö N G Ö R Ü N Ü M, Ü S T Ü N L Ü K L E R İ VE Ö Z E L L İ K L E R İ M i k r o k o n t r o l ö r t a b a n l ı BT- 111

Detaylı

ELM207 Analog Elektronik

ELM207 Analog Elektronik ELM7 Alog Elkroik Giriş Bir Fourir srisi priyodik bir ) oksiyouu, kosiüs v siüslri sosuz oplmı biçimid bir çılımdır. ) cos b si ) Bşk dyişl, hrhgi bir priyodik oksiyo sbi bir dğr, kosiüs v siüs oksiyolrıı

Detaylı

Diferansiyel Denklemler

Diferansiyel Denklemler Difrsil Dklmlr Doç. Dr. Slhi MADEN Ord Üivrsisi F dbi Fkülsi Mmik Bölümü DĐFERANSĐYEL DENKLEMLER Birii Mrbd Birii Drd Difrsil Dklmlr Birii Mrbd Yüksk Drd Difrsil Dklmlr Yüksk Mrbd Bzı Özl Difrsil Dklmlr

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

Hafta 8: Ayrık-zaman Fourier Dönüşümü

Hafta 8: Ayrık-zaman Fourier Dönüşümü Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

D (5 1) Benzer biçimde integral için de bir operatör gösterimi düşünülebilir: a

D (5 1) Benzer biçimde integral için de bir operatör gösterimi düşünülebilir: a BÖÜM 5 APACE DÖNÜŞÜMÜ Şu kdr öğrdiklriizd, gl olrk difriyl dklmlri çözmi cbirl dklmlri çözmd dh zor olduğuu frk mişiizdir. O hld cb difriyl dklmlri cbirl hl döüşürck bir yol vr mıdır? Ev, vrdır. Alıd buu

Detaylı

Eğitim-Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Dersi Çalışma Soruları 1

Eğitim-Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Dersi Çalışma Soruları 1 006-007 Eğitim-Öğrtim Yılı Güz Dönmi Difransil Dnklmlr Drsi Çalışma Soruları 1 1) d/dt +sint difransil dnklmini çözünüz. ) (4+t)d/dt + 6+t difransil dnklmini çözünüz. ) d/dt-7 difransil dnklmini (0)15

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 8..0 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili ouud itlri blirli

Detaylı

2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK

2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK 03 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK A SORU : lim x 8x 9 (x 3) x ifadsii dğri aşağıdaki sçklrd hagisid vrilmiştir? 0 5 7 SORU : cosax x f x foksiyouu x=0 oktasıda sürkli olması içi f(0) ı dğri

Detaylı

Biyomedikal Mühendisliği Bölümü TBM 203 Diferansiyel Denklemler* Güz Yarıyılı

Biyomedikal Mühendisliği Bölümü TBM 203 Diferansiyel Denklemler* Güz Yarıyılı Biomdikal Mühndiliği Bölümü TBM 0 Diranil Dnklmlr* 07-08 Güz Yarıılı Pro. Dr. Yn Emr ERDEMLİ n@kocali.d.tr *B dr notları Yrd. Doç. Dr. Adnan SONDAŞ ın katkılarıla hazırlanmıştır. Diranil Dnklmlr Kanaklar

Detaylı

Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol

Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol Der #6-8 Oomaik Korol Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr.Galip Caever Oomaik Korol Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı aalizi

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

3-P C ile h a b e r le şm e y e u y g u n b ir a r a b ir im. (IS A, P C I, U S B g ib i )

3-P C ile h a b e r le şm e y e u y g u n b ir a r a b ir im. (IS A, P C I, U S B g ib i ) M O D E M N E D İR : M o d u la to r -D e m o d u la to r k e lim e le r in in k ıs a ltm a s ı M O D E M. Y a n i v e r ile r i s e s s in y a lle r in e s e s s in y a lle r in i v e r ile r e d ö n

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

2 c 2000 Faruk Güngör

2 c 2000 Faruk Güngör Bölüm 6 Laplace Dönüşümü 1 2 c 2 Faruk Güngör Bölüm 7 Laplace Dönüşümü 7.1 Laplace Dönüşümünün Tanımı Bir f(t) fonksiyonunun integral dönüşümü T [f(t)] = F (s) = b a k(s, t)f(t) dt biçiminde bir integralle

Detaylı

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz.

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz. 04/10/ 011 011 01 Eğitim Öğretim Yılı Güz Dönemi Diferansiel Denklemler Dersi Çalışma Sorları denklemini çözünüz. 1) d + ( cot + sin ) d 0 denklemini çözünüz. ) (4+t)d/dt + 6+t diferansiel denklemini çözünüz.

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir.

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. u(t):kuvvet u(t) F yay F sönm Yay k:yay sabiti m kütle Sönümlirici b:ösnümlirme sabiti y(t):konum 1 1 3

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

Ğ Ğ ç ü ü üü ç ü ü ü Ğ ü ü üü ü Ğ ç ç ü ü Ş Ş ç Ç Ş ç ü ü ç ç Ş ü ç ü ü ü ü ç ç ü Ç ç ü ü ü ü üü ü ü üü ü üü ç ü ü ü ü ü ü ü ç ü ç Ş ü ü ü ü üü Ş ç ü ç ü ü ü «ç ü Ç ü ü ç ü ü ü ü ü ü ç ç ü ç ü ü üü Ş ü

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır.

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır. OLASILIK v ÝSTATÝSTÝK ( Gnl Tkrar Tsti-1) 1. Bir anahtarlıktaki 5 anahtardan si kapıyı açmak - tadır. Açmayan anahtar bir daha dnnmdiğin gör, bu kapının n çok üçüncü dnmd açılma olasılığı kaçtır? 5 6 7

Detaylı

ü İ İ İ Ö Ö İ Ö Ü ü ü ç ü ü ü ş ç ç Ü ü ü ü Ö ç ş ş ü Ü ç ş ç ş ü Ö Ü Ö Ö ş ç Ö ü ü Ö ü ç ş ş ü ü şi ş ş üçü ç ş ü ü ü Ü ü İ ü ü Ü ü ü ü ü üü ü ü ü ç ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ş ü ü Ö ç

Detaylı

İ ü»ü üü ü ü İ ü üü ü ü ü ü ç ç ç ü Ç ü ü üü ü üü ü ç ü ü ü ü İ İ Ü İİ İ İ İ ü ü ç ü ü ü ü ç ç ü ü ü ç ü ç ü ü ü ü ü ü ü ü ü ü İ Ç ü ü İ ü ü üü ü ü ü ç ç ç ü ü üçü ü ç üç ü İ ü ü ü ü Ö Ç ü İ İ üü ç ü ç

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler

2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler 2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Geçici analizden kastedilen bir anahtarın

Detaylı

ü ü İ ü Ç Ç ü üü İ ü ü ü ü üü ü İ ü ğ İ İ ğ ğ Ç ü İ ü Ç ğ ü Ç üü İ Ç ü ü ü ğ ğ ü ü ğ ü ğ ü ğ Ç ü ü Ç İ Ç ğ ğ Ç ü üü İ İ Ç ü ü ğ ü üü İ ü ü ü ü Ç ü üü ğ ğ ü ü ğ ğ ğ Ç ğ ğ ü ü ü ü İ ü Ç ü ü Ç ü üü ğ Ç ğ

Detaylı

Üç Şiir. Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı

Üç Şiir. Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı Üç Şiir Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı N â z ı m H i k m e t (Se la nik, 14 Ocak 1902 Mos ko va, 3 Ha zi ran 1963) Bah ri ye M e kt eb i n i b it i rd i (1919 ), H am id iy e K r uvaz ör

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 1. BÖÜM A DAGAARI MDE SRU - 1 DEİ SRUARIN ÇÖZÜMERİ 1. 5. T x x x uvvet vektörüü degede uzaklaşa ucu ile hız vektörüü ları çakışık olalıdır. Bua göre şeklide. Dal ga la rı ge li ği de ge ok ta sı a ola

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

Bölüm I Sinyaller ve Sistemler

Bölüm I Sinyaller ve Sistemler - Güz Haberleşme Sisemleride emel Bilgiler Güz - uay ERŞ. Haa Bölüm I Siyaller ve Sisemler emel Bilgiler Siyaller ve Sııladırılması Güç ve Eerji Furier Serileri Furier rasrmu ve Özellikleri Dira Dela Fksiyu

Detaylı

Ü ü ü Ö Ç ü ü ü ö ö ö ü ü ü ü ü ü ö ü Ö ü ö ü ö ü ü ö ü ü ü ü Ç Ç Ç Ö Ç ü ü ü ö ö ü ö ü ö ü ü ü ö ö ö ö ü ü ü ö ü ü Ç ö ü ö ö ö ü ü ö ö ü ü ö ü ö ö ö ö ö ü ü ü ü ü ü ö ü ü ü ü ü ü ö ö ü ö ü ü ö ö Ç ö ü

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

TÜRK VE KIBRIS ÜNİVERSİTELERİ ÜNİVERSİTEMİZ NOT SİSTEMİNDEKİ KARŞILIĞI

TÜRK VE KIBRIS ÜNİVERSİTELERİ ÜNİVERSİTEMİZ NOT SİSTEMİNDEKİ KARŞILIĞI TÜRK VE KIBRIS ÜNİVERSİTELERİ Abant İzzet Baysal Üniversitesi 01.10.2002 tarih ve 37/22 sayılı Üniversitemiz S notu YT P notu DV U notu YZ EX notu MU I notu EK olarak, diğer notların aynen kabulü. Adnan

Detaylı

Bu çalismada iki boyutlu elektron sistemine (2DES) düsük sicakliklarda, dik

Bu çalismada iki boyutlu elektron sistemine (2DES) düsük sicakliklarda, dik GIRIS 879 da Edwi H. Hall, akim tasiya bir iltk, maytik ala içi yrlstirildigid, hm akima hm d maytik alaa dik yöd bir lktrik grilim farki ürttigii ksftti. Hall olayi olarak bili bu gözlmd olusa bu grilim

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

ü ü ü ü İ ü ü ü ü Ö ü ü İ ü üü ü İ ü ü Ü ü Ç Ç İ İ İ ü ü ü ü ü

ü ü ü ü İ ü ü ü ü Ö ü ü İ ü üü ü İ ü ü Ü ü Ç Ç İ İ İ ü ü ü ü ü Ğ ü ü Ğ Ğ Ğ ü ü ü ü ü ü İ ü ü ü ü İ ü ü ü ü ü ü ü İ ü Ç İ ü Ü ü Ö ü ü ü Ö ü Ç İ ü ü ü ü İ ü ü ü ü Ö ü ü İ ü üü ü İ ü ü Ü ü Ç Ç İ İ İ ü ü ü ü ü ü ü ü Ç ü ü ü İ İ İ ü ü Ç ü ü Ş ü ü ü ü Ş ü ü ü ü Ş ü ü ü

Detaylı

Ş Ğ Ş Ğ Ü Ü Ö Ü «Ğ Ü Ü Ğ Ş Ö Ü Ü Ö Ü Ş Ğ Ü Ş Ç Ş Ş Ş Ö Ü Ş Ğ Ö Ç Ş «Ş Ğ Ç Ö Ö Ç Ö Ö Ş Ğ Ü Ü «Ş Ğ Ü Ü Ü Ü Ü «Ş Ğ Ğ Ö Ş Ü Ş Ü Ü Ü Ü Ü Ü Ü Ü Ü Ö Ü Ğ Ö Ö Ü Ş Ğ Ü Ü Ü Ç Ş Ü Ü Ö Ü Ğ Ç Ü Ö Ü Ş Ğ Ö Ç Ü Ü Ü Ü Ş

Detaylı

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö ş ü ş ü ü üü ü ş ö ş ş ö Ü ş ş ş ö Ç ö öü ö ö Ç ş ş ş ö ç ç ş ş ş ş ü ç ş ö ü ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM07 Temel ElektronikI 3. Bölüm: Temel Devre Tepkileri Doç. Dr. Hüseyin Sarı 3. Bölüm: Temel Devre Tepkileri İçerik Devre Tepkilerinin

Detaylı

DERS 5. Limit Süreklilik ve Türev

DERS 5. Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev İlk dersimizi solarıda, it sözüğü kullaılmada bu sözükle iade edile kavram ele alımıştıbak.. Bu dersimizde, it kavramıa biraz daa akıda bakaağız ve bu kavram ardımıla süreklilik

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı