HARDY-LITTLEWOOD MAKSİMAL OPERATÖRÜ ÜZERİNDEKİ ÇALIŞMALARIN İNCELENMESİ AN OVERVIEW OF HARDY-LITTLEWOOD MAXIMAL OPERATOR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HARDY-LITTLEWOOD MAKSİMAL OPERATÖRÜ ÜZERİNDEKİ ÇALIŞMALARIN İNCELENMESİ AN OVERVIEW OF HARDY-LITTLEWOOD MAXIMAL OPERATOR"

Transkript

1 Hardy-ttlewood Maksmal Oeratörü Üzerdek Çalışmaları İcelemes BÜ Fe Blmler Dergs ISSN 5-85 BU Joural of Scece 7 () 8 7 () 8 HARDY-ITTEWOOD MAKSİMA OPERATÖRÜ ÜZERİNDEKİ ÇAIŞMAARIN İNEENMESİ Ferat DEMİR, Serhat Berat EFE* Dcle Üverstes, Mühedslk Fakültes, Elektrk Elektrok Mühedslğ Bölümü, 8 Dyarbakır Özet: Hardy-ttlewood Maksmal oeratörüü temel özellkler fade edlmştr ebesgue uzaylarıda, değşke üstlü ebesgue uzaylarıda ve Sobolev uzaylarıda Hardy-ttlewood maksmal oeratörü ç yaıla çalışmalar celemştr Kayaklar kısmıda çok sayıda makale ve kta verlmştr Makale so, araştırma kısmıda, k t logartmk koşulu dekly satlamıştır Bu koşullar, metrk-ölçümlü (metrc-measure) uzaylarıda maksmal foksyou sıırlığı ç öemldr Alıa souçlar, maksmal foksyou k ağırlıklı sıırlı olması ç yeterllk şartıı verr Aahtar Kelmeler: Hardy-ttlewood Maksmal oeratör, Sobolev uzayları, regulart, k ağırlıklı kestrmler AN OVERVIEW OF HARDY-ITTEWOOD MAXIMA OPERATOR Abstract: Basc roertes of Hardy- ttlewood Maxmal oerator are stated A overvew has bee made o Hardy ttlewood Maxmal oerator for ebesgue saces, ebesgue saces wth varable exoet, ad Sobolev saces A comrehesve lst of aers ad books are gve at refereces At the ed of the aer, the lace of vestgato, we rove a equvalece of two logarthmc codtos whch are essetal for the Hardy-ttlewhood maxmal oerator to be bouded the varable exoet metrc-measure ebesgue saces Alyg the obtaed equvalece, we state the boudedess of maxmal fucto the two weghted case Keywords: Hardy- ttlewood Maxmal oerator, Sobolev saces, regularty, two weghted estmated *Sorumlu yazar beratefe@dcleedutr

2 BÜ Fe Bl Dergs 7,()-8 / Ferhat DEMİR/Serhat Berat EFE GİRİŞ Hardy-ttlewood maksmal oeratörü (geellkle kısaca maksmal oeratör der) aalzde kullaıla öeml br oeratördür Bu oeratör sgular tegralde, dferasyel deklemler teorsde ve dğer oeratörler kotrol etmek ç kullaılır [, ] Bu oeratörü -boyutlu durumu lk kez 9 da İglz matematkçler GH Hardy ve JE ttlewood u br makalesde görüldü [] Daha sora -boyutlu aalogu 99 da NWeer tarafıda çalışıldı Bu makale kesrl Hardy-ttlewood maksmal oeratörü le lgl herhag br çalışma olmayı, klask Hardy- ttlewood maksmal oeratörü üzerde yaıla br çalışmadır Bu makalede ebesgue ölçümü le gösterlecektr f : R R lokal olarak tegralleeble br foksyo olmak üzere, Hardy ttlewood maksmal oeratörü Mf ( x) su f ( y) dy () r B( x, r) B( x, r) olarak taımlaır Burada B( x, r ), x merkezl ve yarıçaı r ola yuvarları (ball) göstermektedr Suremumda bu yuvarlar veya bua dek olarak r ler üzerde alımaktadır Maksmal Oeratörüü taımlamaı brde fazla yolu vardır Öreğ x -merkezl yuvarlar yere x oktasıı çere yuvarlar (merkez olmaya maksmal oeratör) ya da yuvarlar yere ekselere aralel küler alıablr Çoğu zama bu değşklklere rağme bu maksmal oeratörler aslıda brbre dek olurlar Eğer bular yere ekselere aralel dkdörtgeler kullaılırsa değşk souçlar elde edlr [, 4] HARDY-ITTEWOOD MAKSİMA OPERATÖRÜNÜN KASİK ÖZEİKERİ Bu oeratörü lk göze çara bazı özellkler şulardır [] : ) Mf ( x ), Mf ( x) bazı oktalarda veya her yerde sosuz olablr ve Mf ( x) f ( x ) dr ) okal olarak tegralleeble herhag br foksyo ç taımlıdır ) Subleerdr, ya M f g Mf Mg Şmd maksmal oeratörü br özellğ belrte br taım verlecektr Br X toolojk uzayı üzerde br f : X, foksyou verls Eğer ) her br c Rç x X : f ( x) c kümes kaalı küme ( ya da bua dek olarak x X : f ( x) c açık küme) se, bu foksyoa aşağı yarısürekl (lower semcotuous), ) her br c Rç x X : f ( x) c kümes kaalı küme ( ya da bua dek olarak x X : f ( x) c açık küme) se, bu foksyoa yukarı yarısürekl ( uer semcotuous) der [] Dkkat edlecek olursa f ( R ) ç Hardy ttlewood Mf ( x ) loc maksmal foksyou R de aşağı yarısürekldr Buda dolayı R de ölçüleblr br foksyodur f : R, ( ) l f x x x x, e se x dğer yerlerde se () Aalz tegral blgler kullaılarak f ( R ) olduğu halde, her r ç

3 Hardy-ttlewood Maksmal Oeratörü Üzerdek Çalışmaları İcelemes B(, r) Mf ( x) dx olduğu gösterleblr [5] Hatta f foksyoları, sıırlı ve tegralleebldğ halde bu foksyoları Mf ( x ) oeratörüü tegral olduğuu göstere örek çoktur Öreğ f,, aralığıı karakterstk foksyou ke, x ç Bu örekler Mf c f ( R) ( R) Mf ( x) x olur eştszlğ dama sağladığıı söyleme yalış olduğuu göstermektedr ve f, foksyo olsu Eğer R de ölçüleblr br su x R : f ( x) c () olacak şeklde br c sabt varsa, f R de zayıf uzayıa at foksyouu olduğu söyler [6] T subleer br oeratör ve q, olsu Eğer T, ( R ) de zayıf q ( R ) sıırlı br oeratör ve bua dek olarak herhag ç ve f ( R ) ke : ( ) c x R Tf x f () ( R ) olacak şeklde br c sabt var se T ye zayıf t q, der [6] Bu oeratörü ç sıırlılığıı fade ede ülü Hardy ttlewood-weer teorem ve ç fades aşağıdak gbdr Teorem []: Eğer ve f ( R ) se bu durumda Mf heme heme her yerde soludur q ) Eğer f ( R ) se bu durumda her ç x : ( Mf )( x) c f (4) ( R ) ) Eğer ve f ( R ) se bu durumda Mf ( R ) olur ve Mf c f (5) ( ), R ( R ) olur (4) eştszlğde M oeratörü zayıf t, dır Ya M oeratörü de zayıf uzayıa sıırlıdır (5) eştszlğ satı Marckewcz terolasyo teoremde yaılır () de M oeratörüü lokal olarak tegralleemeyebleceğ görülmektedr Aşağıda verle teorem, hag durumda M oeratörüü lokal olarak tegralleebleceğ le lgl olarak faydalı br durum sumaktadır Teorem [6]: l f( x ) f ( R ) ve l f( x),, (6) olarak taımlası ) Eğer R se f( x) f( x) f ( x) l f ( x) dx (7) Mf ( R ) olur loc )Eğer f desteğ (suort) br B yuvarıda ve B olur Mf ( B ) se bu durumda f ( x) l f ( x) dx (8) HARDY-ITTEWOOD MAKSİMA OPERATÖRÜNÜN REGUARİTE ÖZEİKERİ Sobolev uzayı ( lerde taımı yaılacaktır) ve kısm dferasyel deklemler uygulamaları, maksmal oeratörüü foksyolarıı

4 BÜ Fe Bl Dergs 7,()-8 / Ferhat DEMİR/Serhat Berat EFE dferasyelleeblme özellkler, düzgülüğüü asıl koruduğuu blme faydalı olacağıı şaret etmektedr Geel olarak dferasyelleeblr br foksyou maksmal foksyou dferasyelleeblr değldr [7], Öcelkle W ( R ) le gösterle Sobolev uzayı, =,,,, ç lk zayıf kısm Df, türevler ve keds ( ) da ola (ya D f ( ) ve f ( )) foksyolarda oluşur [] Df Df, Df,, D f olmak üzere ( f zayıf gradye) bu Sobolev uzayıdak br foksyou ormu f f Df (), olarak taımlaır Kue, Hardy ttlewood maksmal oeratörüü ç, W ( R ) de sıırlı olduğuu göstermştr Kue teorem şu şeklde fade edleblr: Teorem [7]: olsu Eğer, f W ( R ) se bu durumda, Mf W ( R ) ve,,, ç R de heme heme her yerde DMf MDf olur Burada (5) de,, ç DMf c D, f () olur Daha sora, Taaka ve ç Kue teorem daha da gelştrmştr Taaka ı teorem şöyledr: Teorem [8]: Eğer durumda ' f, W R se bu D Mf tegralleeblr foksyo ve D Mf D f () olur Daha sora Kue ve dqust, lokal Hardy ttlewood oeratörüü Sobolov uzayıda sıırlı olduğuu gösterdler Bu teorem fade etmede öce bazı taımlar verlmeldr, R Ökld uzayıda br açık küme; f :, lokal olarak tegralleeblr br foksyo olsu Suremum r dst( x, ) ( dst( x, ) le x ı sıırıa ola uzaklığı kast edlmektedr) şartıı sağlaya tüm r ler üzerde alımak üzere ( ı çde bulua tüm B x, r yuvarları üzerde), M f :, olarak gösterle local Hardy ttlewood maksmal foksyou M f ( x) su f ( y) dy B( x, r) B ( x, r ) olarak taımlaır [9] Burada lokal maksmal foksyouu bölgeye de bağlı olduğu görülmektedr Teorem [9]: olsu Eğer, f W ( ), bu durumda M f W, ( ) ve heme heme her x ç DM f ( x) M Df ( x ) (4) olur Bu uzay üzerde br f foksyoua verle orm f f Df (5),,,, şekldedr HARDY-ITTEWOOD MAKSİMA OPERATÖRÜNÜN DEĞİŞKEN ÜSTÜ EBESGUE UZAYINDAKİ ÖZEİKERİ Şmd de değşke üstlü ebesgue uzayıda maksmal foksyouu sıırlılığı esas olarak e durumda, oa bakalım 4

5 Hardy-ttlewood Maksmal Oeratörü Üzerdek Çalışmaları İcelemes : R, ölçüleblr br foksyo olsu ( R ) le gösterle değşke üstlü ebesgue uzayı R ( x) f ( x) dx ç şartıı sağlaya foksyolarda oluşur Bu uzaydak br foksyou ormu P () ( x) f f : f ( x) dx () R le taımlaır Daha öce, sabt ke ç maksmal foksyouu sıırlı olduğu fade edlmşt f x : x R ve su x : x R olarak taımlası Teorem []: Eğer olsu ve c ; l () olarak taımlaa log-holder şartıı ve komakt br küme dışıda sabt olursa bu durumda maksmal foksyou ( R ) de sıırlı olur Teorem [, ): üzerde () ve kc şart ( x) l c e olursa ye maksmal foksyou x ( ) () ( R ) de sıırlı olur Daha sora, () koşulu, bularda bağımsız olarak A Nekvda tarafıda yleştrld []: c ( x) ( ) ( x) ( ) c dx 4 HARDY-ITTEWOOD MAKSİMA OPERATÖRÜ İÇİN DENK OGARİTMİK KOŞUAR VE ONARIN İKİ AĞIRIKI KESTİRİMERE UYGUAMAARI Bu bölümde dek logartmk koşullarda söz edlecektr Böyle koşullar so zamalar maksmal foksyou sıırlılığı çalışmalarıda çok yaygı kullaılmaktadır [,, 4, 5, 6, 7, ] Bell olduğu gb [4, 5, 7], eğer üst :, br foksyo, solu varyasyoa sah br Borel ölçümü, ( x), -sıırlı bölge ve aşağıdak ağırlıklı logartmk koşulu sağlaırsa, maksmal foksyo uzaylarıda sıırlı olur: her kü ve her x, y ; ( ) ç koşulu sağlaıyor Taım 4 l ( ) (4) br Borel ölçümü olmak üzere, her kü ve * ( ) ( ) * ç özellğ sağlarsa bu ölçüme k kat (doublg codto) ölçüm der Bu sııf ölçümler kısaca D le belrtlr Taım 4 eğer her kü kümes E E o zama br Borel ölçümü olmak üzere, ç ve ou her alt ç aşağıdak koşul sağlaırsa, E ölçümüü A koşuluu sağladığı söyler Bu fadede, sabtler küüe ve E kümese bağlı değl Burada E 5

6 BÜ Fe Bl Dergs 7,()-8 / Ferhat DEMİR/Serhat Berat EFE şaret uygu küme ebesgue ölçümüü gösterr Bu çalışmada bz k kat şartıı sağlaya ölçümler ç (4) koşuluu, yce taıa, () logartmk koşulua dek olduğuu satlayacağız Buula da maksmal foksyolar ç k ağırlıklı kestrmler ç daha doğal ve kolay kotrol edleblecek koşullar elde edlecektr Başka br deyşle, makale öeml souçları aşağıdak k teoremdr Teorem 4 Eğer Borel ölçümü D ve şartlarıı sağlarsa, her :, ölçüleblr foksyou ç (4) koşulu () koşulua dektr İsat Öce, () (4) satlayalım br kü olsu, öyle k ve xy, oktaları bu küü herhag oktalar olsu İsatlayalım k, (4) koşulu sağlaır l su l : olsu O zama E olduğu ç l küü şartıı sağlaya ve küüü çe ala ve küle ayı merkez bölüşe br kü olsu Açıktır k, l( ) l Eğer o zama D koşulu le dyeblrz:, l l l l, veya (4) O edele, Eğer l l olursa l l l l l l elde ederz Bz sabt stele kadar küçük kabul edeblrz, bu edele l yazablrz Böylece, her x, y ve ç l buluruz Şmd de x, y ve, O zama (4) de yararlaırsak, l l Böylece, her x, y ve l Elde ederz Burada, ( )l ç () (4) satladı Şmd de (4) () olduğuu satlayalım (4) koşuluu varsayalım D koşulu le aşağıdak eştszlğ söyleyeblrz:, her ayı merkeze sah, küler ç 6

7 Hardy-ttlewood Maksmal Oeratörü Üzerdek Çalışmaları İcelemes ( ) ( ) (4) eştszlğ yer alır İlerde bz öyle br d d ( l,, ), d l sayısıı bulacağız k her x, y R, d ç l eştszlğ sağlaacaktır Gerçekte de, eğer xy, keyf oktalar, d, se bu oktaları çere e küçük kü olursa d l sayısıı seçme dayaarak ( ) elde ederz (4) eştszlğde yere, yere alırsak ( ) ( ) elde ederz (4) te buluruz: ( ) x l y (4) (44) Smd, (4) koşuluda ve (44) te yazablrz: l l l ( ) (45) Eğer x y l fades sağ ya l olursa, (45) sayısıı aşmayacaktır Demek, seçersek, d ç l d l eştszlğ elde ederz Eğer d olursa aşağıdak geçş açıktır: ( )l d l Böylece, 4 ( )l d her şartıı sağlaya xy, ç 4 l seçersek, eştszlğ elde ederz Baksa br deyşle, (4) () satladı Teorem 4 satladı Teorem 4` uygulayarak ve [7,Teorem ] de yararlaırsak, aşağıdak Teorem 4 satlamış oluruz Teorem 4 : [, ) br ölçüleblr foksyo, olsu ve (), () şartlarıı sağlası v, : (, ) ölçüleblr foksyoları v,, loc ve aşağıdak şartları sağlası: ) A ; ) yeterce büyük sayıdır) m x A ( m - 7

8 BÜ Fe Bl Dergs 7,()-8 / Ferhat DEMİR/Serhat Berat EFE ) her cu ( x) v dy dx dx sağlaılır; 4) her kü ( x) ç şartı ç m m v x dy dx x dx şartı sağlaılır O zama, öyle başka br sabt vardır k maksmal foksyo ç aşağıdak k ağırlıklı eştszlk doğru olur: v Mf f Teorem 4 satı [7, Theorem ] dek le ayıdırr Sadece, orada () koşuluu yerde (4) koşulu buluuyor Bz se Teorem 4`e dayaarak bu koşulları dek olduğuu satladık Böylece, [7] dek öeml soucu koşullarıda br sadeleştrmş olduk TEŞEKKÜR Prof Dr Farma MAMMADOV`a makale 4 bölümüe katkısıda dolayı teşekkür ederz KAYNAKAR [] Bogachev, V I Measure Theory (st Ed) Srger, (6) [] Kratz,SG ad Parks, H R Geometrc tegrato theory st ed Brkhäuser Bosto, (8) [] Hardy, GH ad ttlewood, JE, A maxmal theorem wth fucto-theoretc alcatos, Acta Math, 54 (9) [4] Guzma, M De, Dfferetato of tegrals, ect Notes Math, Srgler-Verlag New York,, 48 (975) [5] Stroock, D W A cocse troducto to the theory of tegrato Brkhäuser Bosto, (999) [6] u, S, Dg, Y ad Ya, D Sgular Itegrals ad Related Tocs World Scetfc Publshg omay, (7) [7] Kue, J, The Hardy-ttlewood maxmal fucto of a Sobolev-fucto, Israel J Math 7-4 (997) [8] Taaka, HA remark o the dervatve of the oe-dmesoal Hardy-ttlewood maxmal fucto Bull Austral Math Soc ( ) [9] Kue, J, dqvst, P: The dervatve of the maxmal fucto - J Ree Agew Math 5,), 6-67 (998) [] Deg,Maxmal fucto o geeralzed ebesgue saces, Math Iequal Al 7(), 45-5 (4) [] ruz-urbe,d, Foreza,A ad Neugebauer, J The maxmal fucto o varable saces, A Acad Sc Fe Math 8,-8, ad 9 (4), () [] Nekvda, A, Hardy-ttlewood maxmal oerator o (4) ( ), Math IequalAl 7() [] Harjulehto, P, Hästö, P ad Pere, M: Varable exoet Sobolev saces o metrc measure saces Fuct Ar om Math (6) [4] Koklashvl V ad Meskh A Two weghted orm equaltes fort he double hardy trasforms ad strog fractoal maxmal fuctos varable exoet ebesgue saces arxv:7879 () [5] Koklashvl V ad Samko Maxmal ad fractoal oerators weghted - saces Revsta Mathematca Iberoamercaa, (), (4) [6] erer, A K O some questos related to the maxmal oerator o varable saces Tras Amer Math Soc , () [7] Mamedov F ad Zere Y, O a two weghted estmato of maxmal oerator the ebesgue sace wth varable exoet Aal d Matematca, Do 7/s--49, -9-6 Gelş Tarh: 8/9/ Kabul Tarh: 6// 8

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices lert Matrsler Normları İç lt ve Üst Sıırlar Sülema Demrel Üverstes B Türe E Sarııar e Blmler Esttüsü Dergs - (00 - lert Matrsler Normları İç lt ve Üst Sıırlar Bahr TÜREN E SRIPINR Sülema Demrel Üverstes

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK *

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * Fteess Codtos For Soe Segroup Fales ad Costructos ad Effcecy Basr ÇALIŞKAN Mateatk Aabl Dalı Hayrullah AYIK Mateatk Aabl Dalı ÖZET

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada

Detaylı

Bir Alışveriş Merkezinde Hizmet Sektörü Đçin En Kısa Yol Problemi ile Bir Çözüm

Bir Alışveriş Merkezinde Hizmet Sektörü Đçin En Kısa Yol Problemi ile Bir Çözüm Br Alışverş Merkezde Hzmet Sektörü Đç E Kısa Yol Problem le Br Çözüm Pıar Düdar, Mehmet Al Balcı, Zeyep Örs Yorgacıoğlu Ege Üverstes, Matematk Bölümü, Đzmr Yaşar Üverstes, Matematk Bölümü, Đzmr par.dudar@ege.edu.tr,

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

RANKI 2 OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI 1 Reports Of Free Groups Otomorfizm Rank 2 Lie Algebras

RANKI 2 OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI 1 Reports Of Free Groups Otomorfizm Rank 2 Lie Algebras RANKI OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI Reports Of Free Groups Otomorfzm Rak Le Algebras Özge ÖZTEKİN Matematk Aa Blm Dalı Name EKİCİ Matematk Aa Blm Dalı ÖZET Bu çalışmada,

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

BÖLÜM 2 OLASILIK TEORİSİ

BÖLÜM 2 OLASILIK TEORİSİ BÖLÜM OLSILIK TEORİSİ İstatstksel araştırmaları temel koularıda br souu öede kes olarak blmeye bazı şasa bağlı olayları (deemeler) olası tüm mümkü souçlarıı hag sıklıkla ortaya çıktığıı belrleyeblmektr.

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep GENEEŞTİRİMİŞ UANIK KÜMEER Mehme Şah Gazaep Üverses, Maemak ölümü, 27310, Gazaep ÖZET: u çalışmada öcelkle P ( br al ale olarak buludura bulaık kümeler GF ales br halka olarak yapıladırılmaka ve bu yapıı

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeler http://ocm.mt.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında blg almak çn http://ocm.mt.edu/terms veya http://tuba.açık ders.org.tr adresn zyaret ednz. 18.102

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

Quality Planning and Control

Quality Planning and Control Qualty Plag ad Cotrol END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üverstes Edüstr Mühedslğ Aablm Dalı 1 Qualty Maagemet İstatstksel Proses Kotrol Kotrol Kartları 2 END 3618

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

Doç. Dr. Mehmet AKSARAYLI

Doç. Dr. Mehmet AKSARAYLI Doç. Dr. Mehmet AKSARALI www.mehmetaksarayl İstatstksel araştırmalarda k yada daha çok değşke arasıdak lşk celemes ç e çok kullaıla yötemlerde brs regresyo aalzdr. Değşkeler arasıdak lşk matematksel br

Detaylı

Kendine eş operatör fonksiyonlar için Riesz bazı ve özdeğer problemleri

Kendine eş operatör fonksiyonlar için Riesz bazı ve özdeğer problemleri tüdergs/c fe blmler Clt:5, Sayı:1, 75-86 Kasım 2007 Kede eş oeratör foksyolar ç Resz bazı ve özdeğer roblemler Nurha ÇOLAKOĞLU *, Mahr HASANOV İTÜ Fe Blmler Esttüsü, Matematk Mühedslğ Programı, 34469,

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*,

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

Önceki bölümde özetlenen Taylor metodlarında yerel kesme hata mertebesinin yüksek oluşu istenilen bir özelliktir. Diğer taraftan

Önceki bölümde özetlenen Taylor metodlarında yerel kesme hata mertebesinin yüksek oluşu istenilen bir özelliktir. Diğer taraftan III.5.RUNGE-KUTTA METODLARI Öcek bölümde özelee Talor meodlarıda erel kesme aa merebes üksek oluşu sele br özellkr. Dğer araa ürevler buluma ve esaplaması pek çok problem ç karmaşık ve zama alıcı olduğuda

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun: Grş İSTATİSTİK I Ders Değşkelk ve Asmetr Ölçüler Ortalamalar, serler karşılaştırılmasıda her zama yeterl ölçüler değldr. Ayı ortalamayı sahp serler arklı dağılım göstereblrler. Bu edele serler karşılaştırılmasıda,

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı YÖNEYLEM ARAŞTIRMASI III Hafta Determstk Damk Programlama (devam) Damk Programlama Geçe derste küçük ölçekl problemler damk programlamayla yelemel olarak asıl çözüldüğüü gördük. Bu derste, öreklere devam

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

T.C. FEN BİLİMLERİ ENSTİTÜSÜ YILDIZ TEKNİK ÜNİVERSİTESİ AĞIRLIKLI VE DEĞİŞKEN ÜSLÜ LEBESGUE UZAYINDA HARDY OPERATÖRÜNÜN KOMPAKTLIĞI LÜTFİ AKIN

T.C. FEN BİLİMLERİ ENSTİTÜSÜ YILDIZ TEKNİK ÜNİVERSİTESİ AĞIRLIKLI VE DEĞİŞKEN ÜSLÜ LEBESGUE UZAYINDA HARDY OPERATÖRÜNÜN KOMPAKTLIĞI LÜTFİ AKIN T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞIRLIKLI VE DEĞİŞKEN ÜSLÜ LEBESGUE UZAYINDA HARDY OPERATÖRÜNÜN KOMPAKTLIĞI LÜTFİ AKIN DOKTORA TEZİ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DANIŞMAN

Detaylı

Gaunt Katsayılarının Binom Katsayıları Kullanılarak Hesaplanması

Gaunt Katsayılarının Binom Katsayıları Kullanılarak Hesaplanması EN AKÜLTESİ EN DERGİSİ E06 4 9-5 Araştıra Maales Gelş Receved :6/0/06 Kabul Accepted :/0/06 Erha AKIN Selçu Üverstes e aültes z Bölüü Kapüs 450 Koya Türye e-al: ea@selcu.edu.tr Öz: Bu çalışada Gaut atsayıları

Detaylı

GRAPHIN SPEKTRAL YARIÇAPI İÇİN SINIRLAR

GRAPHIN SPEKTRAL YARIÇAPI İÇİN SINIRLAR T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GRAPHIN SPEKTRAL YARIÇAPI İÇİN SINIRLAR Koray BOZDAYI YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR 0 T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Gamma ve Weibull Dağılımları Arasında Kullback-Leibler Uzaklığına Dayalı Ayrım

Gamma ve Weibull Dağılımları Arasında Kullback-Leibler Uzaklığına Dayalı Ayrım Afyo Kocatepe Üverstes Fe ve Mühedslk Blmler Dergs Afyo Kocatepe Uversty Joural of Scece ad Egeerg AKÜ FEMÜBİD 7 (27) 234 (5-55) AKU J. Sc.Eg.7 (27) 234 (5-55) DOI:.5578/fmbd.6774 Gamma ve Webull Dağılımları

Detaylı

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2 l Ta rr ım ı Ekooms Kog rres 6-8 - Eylül l 2000 Tek rrdağ TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ (980-998) (TRANLOG MALİYET FONKİYONU UYGULAMAI) Yaşar AKÇAY Kemal EENGÜN 2. GİRİŞ Türkye tarımı

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

Açık Artırma Teorisi Üzerine Bir Çalışma

Açık Artırma Teorisi Üzerine Bir Çalışma Kocael Üerstes Sosyal Blmler Esttüsü Dergs (4) 27 / 2 : 5-77 Açık Artırma Teors Üzere Br Çalışma Şeket Alper Koç Özet: Bu çalışmada haleler üzere teork r araştırma yapılacaktır. Belrl arsayımlar altıda

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI DAĞILIMLAR İÇİN EN ÇOK OLABİLİRLİK VE FARKLI KAYIP FONKSİYONLARI ALTINDA BAYES TAHMİN EDİCİLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI Gülca GENCER

Detaylı

STANDART OLMAYAN BÜYÜME KOŞULLU ELİPTİK TİPTEN FARK DENKLEMLERİNİN ÇÖZÜMLERİ. Sezgin OĞRAŞ

STANDART OLMAYAN BÜYÜME KOŞULLU ELİPTİK TİPTEN FARK DENKLEMLERİNİN ÇÖZÜMLERİ. Sezgin OĞRAŞ T.C DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ STANDART OLMAYAN BÜYÜME KOŞULLU ELİPTİK TİPTEN FARK DENKLEMLERİNİN ÇÖZÜMLERİ Sezgi OĞRAŞ YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI Temmuz DİYARBAKIR TEŞEKKÜR

Detaylı

SOYUT CEBİR VE SAYILAR TEORİSİ

SOYUT CEBİR VE SAYILAR TEORİSİ ÇÖZÜMLÜ PROBLEMLERLE SOYUT CEBİR VE SAYILAR TEORİSİ PROF. DR. MEHMET ERDOĞAN Beyket Üverstes Fe-Edebyat Fakültes Matematk-Blgsayar Bölümü YRD. DOÇ. DR. GÜLŞEN YILMAZ Beyket Üverstes Fe-Edebyat Fakültes

Detaylı

TABAKALI ŞANS ÖRNEKLEME

TABAKALI ŞANS ÖRNEKLEME 6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve

Detaylı

V vektörleri V nin bir bazı ise : { P 0, P 1,..,P n } nokta (n+1)-lisine A afin uzayının bir afin çatısı denir. Λ xyz açısının ölçüsü

V vektörleri V nin bir bazı ise : { P 0, P 1,..,P n } nokta (n+1)-lisine A afin uzayının bir afin çatısı denir. Λ xyz açısının ölçüsü DİFRANSİYL GOMTRİ Taım (Af Uzay): A Φ V de K csm üzerde br vektör uzayı olsu. Aşağıdak öermeler doğrulaya f:axav foksyou varsa A ya V le brleştrlmş af uzay der..,q,r A ç f(,q)+f(q,r)=f(,r). A ve V ç f(,q)

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

ÇUKUROVA ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ

ÇUKUROVA ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇUKUROVA ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ YÜKSEK LĐSANS TEZĐ Dyae YAŞAR SONLU DÖNÜŞÜMLER YARIGRUBUNDA ÇARPANLARA AYIRMA MATEMATĐK ANABĐLĐM DALI ADANA, 2009 ÖZ YÜKSEK LĐSANS TEZĐ SONLU DÖNÜŞÜMLER YARIGRUBUNDA

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi Yüksek Mertebede Sstemler İç Ayrıştırma Temell Br Kotrol Yötem Osma Çakıroğlu, Müjde Güzelkaya, İbrahm Eks 3 Kotrol ve Otomasyo Mühedslğ Bölümü Elektrk Elektrok Fakültes İstabul Tekk Üverstes,34369, Maslak,

Detaylı

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t)

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t) III.4. YÜKSEK MEREBE AYLOR MEODLARI Saısal tekkler amacı mmum çaba le olablğce uarlı aklaşımlar ele etmektr. Bu eele çeştl aklaşım ötemler vermllğ karşılaştıracak br krtere gereksm varır. İlk ele alıacak

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK Marmara Üverstes İ.İ.B.F. Dergs YIL 00 CİLT XXVIII SAYI I S. 549-57 Özet KARARLI DAĞILIMLARLA FİNANSAL RİSK ÖLÇÜMÜ Ömer ÖNALAN * Bu çalışmada fasal kayıları kalı kuyruklu kararlı dağılım zledğ varsayımı

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

DĐVERJANS OLMAYAN FORMDA ELĐPTĐK DENKLEMLER ĐÇĐN HARNACK EŞĐTSĐZLĐĞĐ MATEMATĐK ANABĐLĐM DALI DĐYARBAKIR T.C DĐCLE ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ

DĐVERJANS OLMAYAN FORMDA ELĐPTĐK DENKLEMLER ĐÇĐN HARNACK EŞĐTSĐZLĐĞĐ MATEMATĐK ANABĐLĐM DALI DĐYARBAKIR T.C DĐCLE ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ T.C DĐCLE ÜNĐVESĐTESĐ FEN BĐLĐMLEĐ ENSTĐTÜSÜ DĐVEJANS OLMAYAN FOMDA ELĐPTĐK DENKLEMLE ĐÇĐN HANACK EŞĐTSĐZLĐĞĐ Al AKGÜL YÜKSEK LĐSANS TEZĐ MATEMATĐK ANABĐLĐM DALI DĐYABAKI EYLÜL - T.C DĐCLE ÜNĐVESĐTESĐ

Detaylı

TÜREV DEĞERLERİNİ İÇEREN RASYONEL İNTERPOLASYON YÖNTEMLERİ VE UYGULAMALARI. Bayram Ali İBRAHİMOĞLU* & Mustafa BAYRAM**

TÜREV DEĞERLERİNİ İÇEREN RASYONEL İNTERPOLASYON YÖNTEMLERİ VE UYGULAMALARI. Bayram Ali İBRAHİMOĞLU* & Mustafa BAYRAM** D.P.Ü. Fe Blmler Esttüsü 6. Sayı Eylül 8 Türev Değerler İçere Rasyoel İterpolasyo Yötemler ve Uygulamaları TÜREV DEĞERLERİNİ İÇEREN RASYONEL İNTERPOLASYON YÖNTEMLERİ VE UYGULAMALARI Bayram Al İBRAHİMOĞLU*

Detaylı

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ANALİZ Ders Notları MART 7, 06 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ PAÜ, Müh. Fak., Make Müh. Böl., Sayısal Aalz Ders Notları, Z.Grg Ösöz Mühedslkte aaltk olarak

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

MOS TRANZİSTORLARDA SICAK TAŞIYICI ETKİSİNİN İSTATİSTİKSEL YÖNTEMLERLE İNCELENMESİ

MOS TRANZİSTORLARDA SICAK TAŞIYICI ETKİSİNİN İSTATİSTİKSEL YÖNTEMLERLE İNCELENMESİ MOS TRANZİSTORLARDA SICAK TAŞIYICI ETKİSİNİN İSTATİSTİKSEL YÖNTEMLERLE İNCELENMESİ Fırat KAÇAR 1 Ayte KUNTMAN Haka KUNTMAN 3 1, Elektrk-Elektrok Mühedslğ Bölümü Mühedslk Fakültes, İstabul Üverstes, 34800,

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

TEZ ONAYI Eda YAZAR tarafıda hazırlaa Fuzzy Topolojk Gruplar adlı tez çalışması 22/07/2008 tarhde jür tarafıda oy brlğ le Akara Üverstes Fe Blmler Est

TEZ ONAYI Eda YAZAR tarafıda hazırlaa Fuzzy Topolojk Gruplar adlı tez çalışması 22/07/2008 tarhde jür tarafıda oy brlğ le Akara Üverstes Fe Blmler Est ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ FUZZY TOPOLOJİK GRUPLAR Eda YAZAR MATEMATİK ANABİLİM DALI ANKARA 2008 Her hakkı saklıdır TEZ ONAYI Eda YAZAR tarafıda hazırlaa Fuzzy Topolojk

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

AES S Kutusuna Benzer S Kutuları Üreten Simulatör

AES S Kutusuna Benzer S Kutuları Üreten Simulatör AES S Kutusua Bezer S Kutuları Ürete Smulatör M.Tolga SAKALLI Trakya Üverstes Blgsayar Mühedslğ tolga@trakya.edu.tr Erca BULUŞ Trakya Üverstes Blgsayar Mühedslğ ercab@trakya.edu.tr Adaç ŞAHİN Trakya Üverstes

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI -BOYUTLU (ÖKLİT) UZAYI Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a, a,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455 İler Tekoloj Blmler Dergs Joural of Advaced Techology Sceces ISSN:47-3455 GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ Yusuf ALAŞAHAN İsmal ERCAN Al ÖZTÜRK 3 Salh TOSUN 4,4 Düzce Üv, Tekoloj

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayça Hatce TÜRKAN GÜVENİLİRLİK ANALİZİNDE KULLANILAN İSTATİSTİKSEL DAĞILIM MODELLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ

Detaylı